![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan2b | Unicode version |
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
sylan2b.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylan2b.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylan2b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2b.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpi 113 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | sylan2b.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylan2 270 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: syl2anb 275 dcor 843 bm1.1 2025 eqtr3 2059 morex 2725 reuss2 3217 reupick 3221 rabsneu 3443 opabss 3821 triun 3867 poirr 4044 wepo 4096 wetrep 4097 rexxfrd 4195 reg3exmidlemwe 4303 nnsuc 4338 fnfco 5065 fun11iun 5147 fnressn 5349 fvpr1g 5367 fvtp1g 5369 fvtp3g 5371 fvtp3 5374 f1mpt 5410 caovlem2d 5693 offval 5719 dfoprab3 5817 1stconst 5842 2ndconst 5843 poxp 5853 tfrlemisucaccv 5939 addclpi 6425 addnidpig 6434 reapmul1 7586 nnnn0addcl 8212 un0addcl 8215 un0mulcl 8216 zltnle 8291 nn0ge0div 8327 uzind3 8351 uzind4 8531 ltsubrp 8617 ltaddrp 8618 xrlttr 8716 xrltso 8717 xltnegi 8748 fzind2 9095 qltnle 9101 expp1 9262 expnegap0 9263 expcllem 9266 mulexpzap 9295 expaddzap 9299 expmulzap 9301 shftf 9431 sqrtdiv 9640 mulcn2 9833 ialgrf 9884 bj-bdfindes 10074 bj-findes 10106 |
Copyright terms: Public domain | W3C validator |