ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  morex GIF version

Theorem morex 2725
Description: Derive membership from uniqueness. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
morex.1 𝐵 ∈ V
morex.2 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
morex ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝜑) → (𝜓𝐵𝐴))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem morex
StepHypRef Expression
1 df-rex 2312 . . . 4 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 exancom 1499 . . . 4 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑥(𝜑𝑥𝐴))
31, 2bitri 173 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝜑𝑥𝐴))
4 nfmo1 1912 . . . . . 6 𝑥∃*𝑥𝜑
5 nfe1 1385 . . . . . 6 𝑥𝑥(𝜑𝑥𝐴)
64, 5nfan 1457 . . . . 5 𝑥(∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝑥𝐴))
7 mopick 1978 . . . . 5 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝑥𝐴)) → (𝜑𝑥𝐴))
86, 7alrimi 1415 . . . 4 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝑥𝐴)) → ∀𝑥(𝜑𝑥𝐴))
9 morex.1 . . . . 5 𝐵 ∈ V
10 morex.2 . . . . . 6 (𝑥 = 𝐵 → (𝜑𝜓))
11 eleq1 2100 . . . . . 6 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
1210, 11imbi12d 223 . . . . 5 (𝑥 = 𝐵 → ((𝜑𝑥𝐴) ↔ (𝜓𝐵𝐴)))
139, 12spcv 2646 . . . 4 (∀𝑥(𝜑𝑥𝐴) → (𝜓𝐵𝐴))
148, 13syl 14 . . 3 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝑥𝐴)) → (𝜓𝐵𝐴))
153, 14sylan2b 271 . 2 ((∃*𝑥𝜑 ∧ ∃𝑥𝐴 𝜑) → (𝜓𝐵𝐴))
1615ancoms 255 1 ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝜑) → (𝜓𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wal 1241   = wceq 1243  wex 1381  wcel 1393  ∃*wmo 1901  wrex 2307  Vcvv 2557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator