ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  repizf2 Unicode version

Theorem repizf2 3915
Description: Replacement. This version of replacement is stronger than repizf 3873 in the sense that  ph does not need to map all values of  x in  w to a value of  y. The resulting set contains those elements for which there is a value of  y and in that sense, this theorem combines repizf 3873 with ax-sep 3875. Another variation would be  A. x  e.  w E* y ph  ->  { y  |  E. x ( x  e.  w  /\  ph ) }  e.  _V but we don't have a proof of that yet. (Contributed by Jim Kingdon, 7-Sep-2018.)
Hypothesis
Ref Expression
repizf2.1  |-  F/ z
ph
Assertion
Ref Expression
repizf2  |-  ( A. x  e.  w  E* y ph  ->  E. z A. x  e.  { x  e.  w  |  E. y ph } E. y  e.  z  ph )
Distinct variable group:    x, y, z, w
Allowed substitution hints:    ph( x, y, z, w)

Proof of Theorem repizf2
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 vex 2560 . . 3  |-  w  e. 
_V
21rabex 3901 . 2  |-  { x  e.  w  |  E. y ph }  e.  _V
3 repizf2lem 3914 . . . 4  |-  ( A. x  e.  w  E* y ph  <->  A. x  e.  {
x  e.  w  |  E. y ph } E! y ph )
4 nfcv 2178 . . . . . 6  |-  F/_ x
v
5 nfrab1 2489 . . . . . 6  |-  F/_ x { x  e.  w  |  E. y ph }
64, 5raleqf 2501 . . . . 5  |-  ( v  =  { x  e.  w  |  E. y ph }  ->  ( A. x  e.  v  E! y ph  <->  A. x  e.  {
x  e.  w  |  E. y ph } E! y ph ) )
7 repizf2.1 . . . . . 6  |-  F/ z
ph
87repizf 3873 . . . . 5  |-  ( A. x  e.  v  E! y ph  ->  E. z A. x  e.  v  E. y  e.  z  ph )
96, 8syl6bir 153 . . . 4  |-  ( v  =  { x  e.  w  |  E. y ph }  ->  ( A. x  e.  { x  e.  w  |  E. y ph } E! y
ph  ->  E. z A. x  e.  v  E. y  e.  z  ph ) )
103, 9syl5bi 141 . . 3  |-  ( v  =  { x  e.  w  |  E. y ph }  ->  ( A. x  e.  w  E* y ph  ->  E. z A. x  e.  v  E. y  e.  z  ph ) )
11 df-rab 2315 . . . . . 6  |-  { x  e.  w  |  E. y ph }  =  {
x  |  ( x  e.  w  /\  E. y ph ) }
12 nfv 1421 . . . . . . . 8  |-  F/ z  x  e.  w
137nfex 1528 . . . . . . . 8  |-  F/ z E. y ph
1412, 13nfan 1457 . . . . . . 7  |-  F/ z ( x  e.  w  /\  E. y ph )
1514nfab 2182 . . . . . 6  |-  F/_ z { x  |  (
x  e.  w  /\  E. y ph ) }
1611, 15nfcxfr 2175 . . . . 5  |-  F/_ z { x  e.  w  |  E. y ph }
1716nfeq2 2189 . . . 4  |-  F/ z  v  =  { x  e.  w  |  E. y ph }
184, 5raleqf 2501 . . . 4  |-  ( v  =  { x  e.  w  |  E. y ph }  ->  ( A. x  e.  v  E. y  e.  z  ph  <->  A. x  e.  { x  e.  w  |  E. y ph } E. y  e.  z  ph ) )
1917, 18exbid 1507 . . 3  |-  ( v  =  { x  e.  w  |  E. y ph }  ->  ( E. z A. x  e.  v  E. y  e.  z 
ph 
<->  E. z A. x  e.  { x  e.  w  |  E. y ph } E. y  e.  z  ph ) )
2010, 19sylibd 138 . 2  |-  ( v  =  { x  e.  w  |  E. y ph }  ->  ( A. x  e.  w  E* y ph  ->  E. z A. x  e.  { x  e.  w  |  E. y ph } E. y  e.  z  ph ) )
212, 20vtocle 2627 1  |-  ( A. x  e.  w  E* y ph  ->  E. z A. x  e.  { x  e.  w  |  E. y ph } E. y  e.  z  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243   F/wnf 1349   E.wex 1381   E!weu 1900   E*wmo 1901   {cab 2026   A.wral 2306   E.wrex 2307   {crab 2310
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rab 2315  df-v 2559  df-in 2924  df-ss 2931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator