ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  repizf2 Structured version   GIF version

Theorem repizf2 3885
Description: Replacement. This version of replacement is stronger than repizf 3843 in the sense that φ does not need to map all values of x in w to a value of y. The resulting set contains those elements for which there is a value of y and in that sense, this theorem combines repizf 3843 with ax-sep 3845. Another variation would be x w∃*yφ → {yx(x w φ)} V but we don't have a proof of that yet. (Contributed by Jim Kingdon, 7-Sep-2018.)
Hypothesis
Ref Expression
repizf2.1 zφ
Assertion
Ref Expression
repizf2 (x w ∃*yφzx {x wyφ}y z φ)
Distinct variable group:   x,y,z,w
Allowed substitution hints:   φ(x,y,z,w)

Proof of Theorem repizf2
Dummy variable v is distinct from all other variables.
StepHypRef Expression
1 vex 2534 . . 3 w V
21rabex 3871 . 2 {x wyφ} V
3 repizf2lem 3884 . . . 4 (x w ∃*yφx {x wyφ}∃!yφ)
4 nfcv 2156 . . . . . 6 xv
5 nfrab1 2463 . . . . . 6 x{x wyφ}
64, 5raleqf 2475 . . . . 5 (v = {x wyφ} → (x v ∃!yφx {x wyφ}∃!yφ))
7 repizf2.1 . . . . . 6 zφ
87repizf 3843 . . . . 5 (x v ∃!yφzx v y z φ)
96, 8syl6bir 153 . . . 4 (v = {x wyφ} → (x {x wyφ}∃!yφzx v y z φ))
103, 9syl5bi 141 . . 3 (v = {x wyφ} → (x w ∃*yφzx v y z φ))
11 df-rab 2289 . . . . . 6 {x wyφ} = {x ∣ (x w yφ)}
12 nfv 1398 . . . . . . . 8 z x w
137nfex 1506 . . . . . . . 8 zyφ
1412, 13nfan 1435 . . . . . . 7 z(x w yφ)
1514nfab 2160 . . . . . 6 z{x ∣ (x w yφ)}
1611, 15nfcxfr 2153 . . . . 5 z{x wyφ}
1716nfeq2 2167 . . . 4 z v = {x wyφ}
184, 5raleqf 2475 . . . 4 (v = {x wyφ} → (x v y z φx {x wyφ}y z φ))
1917, 18exbid 1485 . . 3 (v = {x wyφ} → (zx v y z φzx {x wyφ}y z φ))
2010, 19sylibd 138 . 2 (v = {x wyφ} → (x w ∃*yφzx {x wyφ}y z φ))
212, 20vtocle 2600 1 (x w ∃*yφzx {x wyφ}y z φ)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   = wceq 1226  wnf 1325  wex 1358  ∃!weu 1878  ∃*wmo 1879  {cab 2004  wral 2280  wrex 2281  {crab 2284
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1312  ax-7 1313  ax-gen 1314  ax-ie1 1359  ax-ie2 1360  ax-8 1372  ax-10 1373  ax-11 1374  ax-i12 1375  ax-bnd 1376  ax-4 1377  ax-17 1396  ax-i9 1400  ax-ial 1405  ax-i5r 1406  ax-ext 2000  ax-coll 3842  ax-sep 3845
This theorem depends on definitions:  df-bi 110  df-tru 1229  df-nf 1326  df-sb 1624  df-eu 1881  df-mo 1882  df-clab 2005  df-cleq 2011  df-clel 2014  df-nfc 2145  df-ral 2285  df-rab 2289  df-v 2533  df-in 2897  df-ss 2904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator