![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > repizf2lem | GIF version |
Description: Lemma for repizf2 3915. If we have a function-like proposition which provides at most one value of 𝑦 for each 𝑥 in a set 𝑤, we can change "at most one" to "exactly one" by restricting the values of 𝑥 to those values for which the proposition provides a value of 𝑦. (Contributed by Jim Kingdon, 7-Sep-2018.) |
Ref | Expression |
---|---|
repizf2lem | ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 1904 | . . . 4 ⊢ (∃*𝑦𝜑 ↔ (∃𝑦𝜑 → ∃!𝑦𝜑)) | |
2 | 1 | imbi2i 215 | . . 3 ⊢ ((𝑥 ∈ 𝑤 → ∃*𝑦𝜑) ↔ (𝑥 ∈ 𝑤 → (∃𝑦𝜑 → ∃!𝑦𝜑))) |
3 | 2 | albii 1359 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝑤 → ∃*𝑦𝜑) ↔ ∀𝑥(𝑥 ∈ 𝑤 → (∃𝑦𝜑 → ∃!𝑦𝜑))) |
4 | df-ral 2311 | . 2 ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝑤 → ∃*𝑦𝜑)) | |
5 | df-ral 2311 | . . 3 ⊢ (∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → ∃!𝑦𝜑)) | |
6 | rabid 2485 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} ↔ (𝑥 ∈ 𝑤 ∧ ∃𝑦𝜑)) | |
7 | 6 | imbi1i 227 | . . . . 5 ⊢ ((𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → ∃!𝑦𝜑) ↔ ((𝑥 ∈ 𝑤 ∧ ∃𝑦𝜑) → ∃!𝑦𝜑)) |
8 | impexp 250 | . . . . 5 ⊢ (((𝑥 ∈ 𝑤 ∧ ∃𝑦𝜑) → ∃!𝑦𝜑) ↔ (𝑥 ∈ 𝑤 → (∃𝑦𝜑 → ∃!𝑦𝜑))) | |
9 | 7, 8 | bitri 173 | . . . 4 ⊢ ((𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → ∃!𝑦𝜑) ↔ (𝑥 ∈ 𝑤 → (∃𝑦𝜑 → ∃!𝑦𝜑))) |
10 | 9 | albii 1359 | . . 3 ⊢ (∀𝑥(𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → ∃!𝑦𝜑) ↔ ∀𝑥(𝑥 ∈ 𝑤 → (∃𝑦𝜑 → ∃!𝑦𝜑))) |
11 | 5, 10 | bitri 173 | . 2 ⊢ (∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝑤 → (∃𝑦𝜑 → ∃!𝑦𝜑))) |
12 | 3, 4, 11 | 3bitr4i 201 | 1 ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 ∀wal 1241 ∃wex 1381 ∈ wcel 1393 ∃!weu 1900 ∃*wmo 1901 ∀wral 2306 {crab 2310 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-sb 1646 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-ral 2311 df-rab 2315 |
This theorem is referenced by: repizf2 3915 |
Copyright terms: Public domain | W3C validator |