![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pwne | GIF version |
Description: No set equals its power set. The sethood antecedent is necessary; compare pwv 3579. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
pwne | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwnss 3912 | . 2 ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝐴 ⊆ 𝐴) | |
2 | eqimss 2997 | . . 3 ⊢ (𝒫 𝐴 = 𝐴 → 𝒫 𝐴 ⊆ 𝐴) | |
3 | 2 | necon3bi 2255 | . 2 ⊢ (¬ 𝒫 𝐴 ⊆ 𝐴 → 𝒫 𝐴 ≠ 𝐴) |
4 | 1, 3 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≠ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 1393 ≠ wne 2204 ⊆ wss 2917 𝒫 cpw 3359 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-nel 2207 df-rab 2315 df-v 2559 df-in 2924 df-ss 2931 df-pw 3361 |
This theorem is referenced by: pnfnemnf 8697 |
Copyright terms: Public domain | W3C validator |