Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > repizf2lem | Unicode version |
Description: Lemma for repizf2 3915. If we have a function-like proposition which provides at most one value of for each in a set , we can change "at most one" to "exactly one" by restricting the values of to those values for which the proposition provides a value of . (Contributed by Jim Kingdon, 7-Sep-2018.) |
Ref | Expression |
---|---|
repizf2lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 1904 | . . . 4 | |
2 | 1 | imbi2i 215 | . . 3 |
3 | 2 | albii 1359 | . 2 |
4 | df-ral 2311 | . 2 | |
5 | df-ral 2311 | . . 3 | |
6 | rabid 2485 | . . . . . 6 | |
7 | 6 | imbi1i 227 | . . . . 5 |
8 | impexp 250 | . . . . 5 | |
9 | 7, 8 | bitri 173 | . . . 4 |
10 | 9 | albii 1359 | . . 3 |
11 | 5, 10 | bitri 173 | . 2 |
12 | 3, 4, 11 | 3bitr4i 201 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wal 1241 wex 1381 wcel 1393 weu 1900 wmo 1901 wral 2306 crab 2310 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-sb 1646 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-ral 2311 df-rab 2315 |
This theorem is referenced by: repizf2 3915 |
Copyright terms: Public domain | W3C validator |