Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq2 GIF version

Theorem nfeq2 2189
 Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq2.1 𝑥𝐵
Assertion
Ref Expression
nfeq2 𝑥 𝐴 = 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem nfeq2
StepHypRef Expression
1 nfcv 2178 . 2 𝑥𝐴
2 nfeq2.1 . 2 𝑥𝐵
31, 2nfeq 2185 1 𝑥 𝐴 = 𝐵
 Colors of variables: wff set class Syntax hints:   = wceq 1243  Ⅎwnf 1349  Ⅎwnfc 2165 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-cleq 2033  df-clel 2036  df-nfc 2167 This theorem is referenced by:  issetf  2562  eqvincf  2669  csbhypf  2885  nfpr  3420  intab  3644  nfmpt  3849  cbvmpt  3851  repizf2  3915  moop2  3988  eusvnf  4185  elrnmpt1  4585  fmptco  5330  elabrex  5397  nfmpt2  5573  cbvmpt2x  5582  ovmpt2dxf  5626  fmpt2x  5826  nfrecs  5922  erovlem  6198  nfsum1  9875  nfsum  9876
 Copyright terms: Public domain W3C validator