Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > repizf | GIF version |
Description: Axiom of Replacement. Axiom 7' of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). In our context this is not an axiom, but a theorem proved from ax-coll 3872. It is identical to zfrep6 3874 except for the choice of a freeness hypothesis rather than a distinct variable constraint between 𝑏 and 𝜑. (Contributed by Jim Kingdon, 23-Aug-2018.) |
Ref | Expression |
---|---|
ax-coll.1 | ⊢ Ⅎ𝑏𝜑 |
Ref | Expression |
---|---|
repizf | ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 1930 | . . 3 ⊢ (∃!𝑦𝜑 → ∃𝑦𝜑) | |
2 | 1 | ralimi 2384 | . 2 ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∀𝑥 ∈ 𝑎 ∃𝑦𝜑) |
3 | ax-coll.1 | . . 3 ⊢ Ⅎ𝑏𝜑 | |
4 | 3 | ax-coll 3872 | . 2 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
5 | 2, 4 | syl 14 | 1 ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1349 ∃wex 1381 ∃!weu 1900 ∀wral 2306 ∃wrex 2307 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-coll 3872 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-eu 1903 df-ral 2311 |
This theorem is referenced by: zfrep6 3874 repizf2 3915 |
Copyright terms: Public domain | W3C validator |