ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  class2seteq Unicode version

Theorem class2seteq 3916
Description: Equality theorem for classes and sets . (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.)
Assertion
Ref Expression
class2seteq  |-  ( A  e.  V  ->  { x  e.  A  |  A  e.  _V }  =  A )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem class2seteq
StepHypRef Expression
1 elex 2566 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 ax-1 5 . . . . 5  |-  ( A  e.  _V  ->  (
x  e.  A  ->  A  e.  _V )
)
32ralrimiv 2391 . . . 4  |-  ( A  e.  _V  ->  A. x  e.  A  A  e.  _V )
4 rabid2 2486 . . . 4  |-  ( A  =  { x  e.  A  |  A  e. 
_V }  <->  A. x  e.  A  A  e.  _V )
53, 4sylibr 137 . . 3  |-  ( A  e.  _V  ->  A  =  { x  e.  A  |  A  e.  _V } )
65eqcomd 2045 . 2  |-  ( A  e.  _V  ->  { x  e.  A  |  A  e.  _V }  =  A )
71, 6syl 14 1  |-  ( A  e.  V  ->  { x  e.  A  |  A  e.  _V }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243    e. wcel 1393   A.wral 2306   {crab 2310   _Vcvv 2557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-ral 2311  df-rab 2315  df-v 2559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator