ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpt2dxf Unicode version

Theorem ovmpt2dxf 5626
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovmpt2dx.1  |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
ovmpt2dx.2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
ovmpt2dx.3  |-  ( (
ph  /\  x  =  A )  ->  D  =  L )
ovmpt2dx.4  |-  ( ph  ->  A  e.  C )
ovmpt2dx.5  |-  ( ph  ->  B  e.  L )
ovmpt2dx.6  |-  ( ph  ->  S  e.  X )
ovmpt2dxf.px  |-  F/ x ph
ovmpt2dxf.py  |-  F/ y
ph
ovmpt2dxf.ay  |-  F/_ y A
ovmpt2dxf.bx  |-  F/_ x B
ovmpt2dxf.sx  |-  F/_ x S
ovmpt2dxf.sy  |-  F/_ y S
Assertion
Ref Expression
ovmpt2dxf  |-  ( ph  ->  ( A F B )  =  S )
Distinct variable groups:    x, y    x, A    y, B
Allowed substitution hints:    ph( x, y)    A( y)    B( x)    C( x, y)    D( x, y)    R( x, y)    S( x, y)    F( x, y)    L( x, y)    X( x, y)

Proof of Theorem ovmpt2dxf
StepHypRef Expression
1 ovmpt2dx.1 . . 3  |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
21oveqd 5529 . 2  |-  ( ph  ->  ( A F B )  =  ( A ( x  e.  C ,  y  e.  D  |->  R ) B ) )
3 ovmpt2dx.4 . . . 4  |-  ( ph  ->  A  e.  C )
4 ovmpt2dxf.px . . . . 5  |-  F/ x ph
5 ovmpt2dx.5 . . . . . 6  |-  ( ph  ->  B  e.  L )
6 ovmpt2dxf.py . . . . . . 7  |-  F/ y
ph
7 eqid 2040 . . . . . . . . 9  |-  ( x  e.  C ,  y  e.  D  |->  R )  =  ( x  e.  C ,  y  e.  D  |->  R )
87ovmpt4g 5623 . . . . . . . 8  |-  ( ( x  e.  C  /\  y  e.  D  /\  R  e.  _V )  ->  ( x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R )
98a1i 9 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R ) )
106, 9alrimi 1415 . . . . . 6  |-  ( ph  ->  A. y ( ( x  e.  C  /\  y  e.  D  /\  R  e.  _V )  ->  ( x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R ) )
115, 10spsbcd 2776 . . . . 5  |-  ( ph  ->  [. B  /  y ]. ( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R ) )
124, 11alrimi 1415 . . . 4  |-  ( ph  ->  A. x [. B  /  y ]. (
( x  e.  C  /\  y  e.  D  /\  R  e.  _V )  ->  ( x ( x  e.  C , 
y  e.  D  |->  R ) y )  =  R ) )
133, 12spsbcd 2776 . . 3  |-  ( ph  ->  [. A  /  x ]. [. B  /  y ]. ( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R ) )
145adantr 261 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  B  e.  L )
15 simplr 482 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  x  =  A )
163ad2antrr 457 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  A  e.  C )
1715, 16eqeltrd 2114 . . . . . . 7  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  x  e.  C )
185ad2antrr 457 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  B  e.  L )
19 simpr 103 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  y  =  B )
20 ovmpt2dx.3 . . . . . . . . 9  |-  ( (
ph  /\  x  =  A )  ->  D  =  L )
2120adantr 261 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  D  =  L )
2218, 19, 213eltr4d 2121 . . . . . . 7  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  y  e.  D )
23 ovmpt2dx.2 . . . . . . . . 9  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
2423anassrs 380 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  R  =  S )
25 ovmpt2dx.6 . . . . . . . . . 10  |-  ( ph  ->  S  e.  X )
26 elex 2566 . . . . . . . . . 10  |-  ( S  e.  X  ->  S  e.  _V )
2725, 26syl 14 . . . . . . . . 9  |-  ( ph  ->  S  e.  _V )
2827ad2antrr 457 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  S  e.  _V )
2924, 28eqeltrd 2114 . . . . . . 7  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  R  e.  _V )
30 biimt 230 . . . . . . 7  |-  ( ( x  e.  C  /\  y  e.  D  /\  R  e.  _V )  ->  ( ( x ( x  e.  C , 
y  e.  D  |->  R ) y )  =  R  <->  ( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R ) ) )
3117, 22, 29, 30syl3anc 1135 . . . . . 6  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  (
( x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R  <-> 
( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R ) ) )
3215, 19oveq12d 5530 . . . . . . 7  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  ( A ( x  e.  C ,  y  e.  D  |->  R ) B ) )
3332, 24eqeq12d 2054 . . . . . 6  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  (
( x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R  <-> 
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S ) )
3431, 33bitr3d 179 . . . . 5  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  (
( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R )  <-> 
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S ) )
35 ovmpt2dxf.ay . . . . . . 7  |-  F/_ y A
3635nfeq2 2189 . . . . . 6  |-  F/ y  x  =  A
376, 36nfan 1457 . . . . 5  |-  F/ y ( ph  /\  x  =  A )
38 nfmpt22 5572 . . . . . . . 8  |-  F/_ y
( x  e.  C ,  y  e.  D  |->  R )
39 nfcv 2178 . . . . . . . 8  |-  F/_ y B
4035, 38, 39nfov 5535 . . . . . . 7  |-  F/_ y
( A ( x  e.  C ,  y  e.  D  |->  R ) B )
41 ovmpt2dxf.sy . . . . . . 7  |-  F/_ y S
4240, 41nfeq 2185 . . . . . 6  |-  F/ y ( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S
4342a1i 9 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  F/ y ( A ( x  e.  C , 
y  e.  D  |->  R ) B )  =  S )
4414, 34, 37, 43sbciedf 2798 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  ( [. B  /  y ]. ( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R )  <-> 
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S ) )
45 nfcv 2178 . . . . . . 7  |-  F/_ x A
46 nfmpt21 5571 . . . . . . 7  |-  F/_ x
( x  e.  C ,  y  e.  D  |->  R )
47 ovmpt2dxf.bx . . . . . . 7  |-  F/_ x B
4845, 46, 47nfov 5535 . . . . . 6  |-  F/_ x
( A ( x  e.  C ,  y  e.  D  |->  R ) B )
49 ovmpt2dxf.sx . . . . . 6  |-  F/_ x S
5048, 49nfeq 2185 . . . . 5  |-  F/ x
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S
5150a1i 9 . . . 4  |-  ( ph  ->  F/ x ( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S )
523, 44, 4, 51sbciedf 2798 . . 3  |-  ( ph  ->  ( [. A  /  x ]. [. B  / 
y ]. ( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R )  <-> 
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S ) )
5313, 52mpbid 135 . 2  |-  ( ph  ->  ( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S )
542, 53eqtrd 2072 1  |-  ( ph  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243   F/wnf 1349    e. wcel 1393   F/_wnfc 2165   _Vcvv 2557   [.wsbc 2764  (class class class)co 5512    |-> cmpt2 5514
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517
This theorem is referenced by:  ovmpt2dx  5627  mpt2xopoveq  5855
  Copyright terms: Public domain W3C validator