ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluniab Unicode version

Theorem eluniab 3592
Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
eluniab  |-  ( A  e.  U. { x  |  ph }  <->  E. x
( A  e.  x  /\  ph ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem eluniab
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eluni 3583 . 2  |-  ( A  e.  U. { x  |  ph }  <->  E. y
( A  e.  y  /\  y  e.  {
x  |  ph }
) )
2 nfv 1421 . . . 4  |-  F/ x  A  e.  y
3 nfsab1 2030 . . . 4  |-  F/ x  y  e.  { x  |  ph }
42, 3nfan 1457 . . 3  |-  F/ x
( A  e.  y  /\  y  e.  {
x  |  ph }
)
5 nfv 1421 . . 3  |-  F/ y ( A  e.  x  /\  ph )
6 eleq2 2101 . . . 4  |-  ( y  =  x  ->  ( A  e.  y  <->  A  e.  x ) )
7 eleq1 2100 . . . . 5  |-  ( y  =  x  ->  (
y  e.  { x  |  ph }  <->  x  e.  { x  |  ph }
) )
8 abid 2028 . . . . 5  |-  ( x  e.  { x  | 
ph }  <->  ph )
97, 8syl6bb 185 . . . 4  |-  ( y  =  x  ->  (
y  e.  { x  |  ph }  <->  ph ) )
106, 9anbi12d 442 . . 3  |-  ( y  =  x  ->  (
( A  e.  y  /\  y  e.  {
x  |  ph }
)  <->  ( A  e.  x  /\  ph )
) )
114, 5, 10cbvex 1639 . 2  |-  ( E. y ( A  e.  y  /\  y  e. 
{ x  |  ph } )  <->  E. x
( A  e.  x  /\  ph ) )
121, 11bitri 173 1  |-  ( A  e.  U. { x  |  ph }  <->  E. x
( A  e.  x  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98   E.wex 1381    e. wcel 1393   {cab 2026   U.cuni 3580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-uni 3581
This theorem is referenced by:  elunirab  3593  dfiun2g  3689  inuni  3909  snnex  4181  elfv  5176  unielxp  5800  tfrlem9  5935  tfr0  5937
  Copyright terms: Public domain W3C validator