ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elunirab Unicode version

Theorem elunirab 3593
Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.)
Assertion
Ref Expression
elunirab  |-  ( A  e.  U. { x  e.  B  |  ph }  <->  E. x  e.  B  ( A  e.  x  /\  ph ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem elunirab
StepHypRef Expression
1 eluniab 3592 . 2  |-  ( A  e.  U. { x  |  ( x  e.  B  /\  ph ) } 
<->  E. x ( A  e.  x  /\  (
x  e.  B  /\  ph ) ) )
2 df-rab 2315 . . . 4  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
32unieqi 3590 . . 3  |-  U. {
x  e.  B  |  ph }  =  U. {
x  |  ( x  e.  B  /\  ph ) }
43eleq2i 2104 . 2  |-  ( A  e.  U. { x  e.  B  |  ph }  <->  A  e.  U. { x  |  ( x  e.  B  /\  ph ) } )
5 df-rex 2312 . . 3  |-  ( E. x  e.  B  ( A  e.  x  /\  ph )  <->  E. x ( x  e.  B  /\  ( A  e.  x  /\  ph ) ) )
6 an12 495 . . . 4  |-  ( ( x  e.  B  /\  ( A  e.  x  /\  ph ) )  <->  ( A  e.  x  /\  (
x  e.  B  /\  ph ) ) )
76exbii 1496 . . 3  |-  ( E. x ( x  e.  B  /\  ( A  e.  x  /\  ph ) )  <->  E. x
( A  e.  x  /\  ( x  e.  B  /\  ph ) ) )
85, 7bitri 173 . 2  |-  ( E. x  e.  B  ( A  e.  x  /\  ph )  <->  E. x ( A  e.  x  /\  (
x  e.  B  /\  ph ) ) )
91, 4, 83bitr4i 201 1  |-  ( A  e.  U. { x  e.  B  |  ph }  <->  E. x  e.  B  ( A  e.  x  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98   E.wex 1381    e. wcel 1393   {cab 2026   E.wrex 2307   {crab 2310   U.cuni 3580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-rab 2315  df-v 2559  df-uni 3581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator