Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unieqi | Unicode version |
Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unieqi.1 |
Ref | Expression |
---|---|
unieqi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqi.1 | . 2 | |
2 | unieq 3589 | . 2 | |
3 | 1, 2 | ax-mp 7 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1243 cuni 3580 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-uni 3581 |
This theorem is referenced by: elunirab 3593 unisn 3596 uniop 3992 unisuc 4150 unisucg 4151 univ 4207 dfiun3g 4589 op1sta 4802 op2nda 4805 dfdm2 4852 iotajust 4866 dfiota2 4868 cbviota 4872 sb8iota 4874 dffv4g 5175 funfvdm2f 5238 riotauni 5474 1st0 5771 2nd0 5772 unielxp 5800 brtpos0 5867 recsfval 5931 uniqs 6164 xpassen 6304 |
Copyright terms: Public domain | W3C validator |