![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfco | Unicode version |
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.) |
Ref | Expression |
---|---|
nfco.1 |
![]() ![]() ![]() ![]() |
nfco.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfco |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 4354 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfcv 2178 |
. . . . . 6
![]() ![]() ![]() ![]() | |
3 | nfco.2 |
. . . . . 6
![]() ![]() ![]() ![]() | |
4 | nfcv 2178 |
. . . . . 6
![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | nfbr 3808 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
6 | nfco.1 |
. . . . . 6
![]() ![]() ![]() ![]() | |
7 | nfcv 2178 |
. . . . . 6
![]() ![]() ![]() ![]() | |
8 | 4, 6, 7 | nfbr 3808 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
9 | 5, 8 | nfan 1457 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9 | nfex 1528 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10 | nfopab 3825 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 1, 11 | nfcxfr 2175 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-co 4354 |
This theorem is referenced by: nffun 4924 nftpos 5894 |
Copyright terms: Public domain | W3C validator |