ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota5f Unicode version

Theorem riota5f 5492
Description: A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riota5f.1  |-  ( ph  -> 
F/_ x B )
riota5f.2  |-  ( ph  ->  B  e.  A )
riota5f.3  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  x  =  B ) )
Assertion
Ref Expression
riota5f  |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  B
)
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    ps( x)    B( x)

Proof of Theorem riota5f
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 riota5f.3 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  x  =  B ) )
21ralrimiva 2392 . 2  |-  ( ph  ->  A. x  e.  A  ( ps  <->  x  =  B
) )
3 riota5f.2 . . . 4  |-  ( ph  ->  B  e.  A )
4 a1tru 1259 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y ) ) )  -> T.  )
5 reu6i 2732 . . . . . . . . 9  |-  ( ( y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) )  ->  E! x  e.  A  ps )
65adantl 262 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y ) ) )  ->  E! x  e.  A  ps )
7 nfv 1421 . . . . . . . . . 10  |-  F/ x ph
8 nfv 1421 . . . . . . . . . . 11  |-  F/ x  y  e.  A
9 nfra1 2355 . . . . . . . . . . 11  |-  F/ x A. x  e.  A  ( ps  <->  x  =  y
)
108, 9nfan 1457 . . . . . . . . . 10  |-  F/ x
( y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) )
117, 10nfan 1457 . . . . . . . . 9  |-  F/ x
( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )
12 nfcvd 2179 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y ) ) )  ->  F/_ x y )
13 nfvd 1422 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y ) ) )  ->  F/ x T.  )
14 simprl 483 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y ) ) )  ->  y  e.  A )
15 simpr 103 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )  /\  x  =  y )  ->  x  =  y )
16 simplrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )  /\  x  =  y )  ->  A. x  e.  A  ( ps  <->  x  =  y
) )
17 simplrl 487 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )  /\  x  =  y )  ->  y  e.  A )
1815, 17eqeltrd 2114 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )  /\  x  =  y )  ->  x  e.  A )
19 rsp 2369 . . . . . . . . . . . 12  |-  ( A. x  e.  A  ( ps 
<->  x  =  y )  ->  ( x  e.  A  ->  ( ps  <->  x  =  y ) ) )
2016, 18, 19sylc 56 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )  /\  x  =  y )  ->  ( ps  <->  x  =  y ) )
2115, 20mpbird 156 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )  /\  x  =  y )  ->  ps )
22 a1tru 1259 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )  /\  x  =  y )  -> T.  )
2321, 222thd 164 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )  /\  x  =  y )  ->  ( ps  <-> T.  )
)
2411, 12, 13, 14, 23riota2df 5488 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y
) ) )  /\  E! x  e.  A  ps )  ->  ( T.  <-> 
( iota_ x  e.  A  ps )  =  y
) )
256, 24mpdan 398 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y ) ) )  ->  ( T.  <->  (
iota_ x  e.  A  ps )  =  y
) )
264, 25mpbid 135 . . . . . 6  |-  ( (
ph  /\  ( y  e.  A  /\  A. x  e.  A  ( ps  <->  x  =  y ) ) )  ->  ( iota_ x  e.  A  ps )  =  y )
2726expr 357 . . . . 5  |-  ( (
ph  /\  y  e.  A )  ->  ( A. x  e.  A  ( ps  <->  x  =  y
)  ->  ( iota_ x  e.  A  ps )  =  y ) )
2827ralrimiva 2392 . . . 4  |-  ( ph  ->  A. y  e.  A  ( A. x  e.  A  ( ps  <->  x  =  y
)  ->  ( iota_ x  e.  A  ps )  =  y ) )
29 rspsbc 2840 . . . 4  |-  ( B  e.  A  ->  ( A. y  e.  A  ( A. x  e.  A  ( ps  <->  x  =  y
)  ->  ( iota_ x  e.  A  ps )  =  y )  ->  [. B  /  y ]. ( A. x  e.  A  ( ps  <->  x  =  y )  ->  ( iota_ x  e.  A  ps )  =  y )
) )
303, 28, 29sylc 56 . . 3  |-  ( ph  ->  [. B  /  y ]. ( A. x  e.  A  ( ps  <->  x  =  y )  ->  ( iota_ x  e.  A  ps )  =  y )
)
31 nfcvd 2179 . . . . . . . 8  |-  ( ph  -> 
F/_ x y )
32 riota5f.1 . . . . . . . 8  |-  ( ph  -> 
F/_ x B )
3331, 32nfeqd 2192 . . . . . . 7  |-  ( ph  ->  F/ x  y  =  B )
347, 33nfan1 1456 . . . . . 6  |-  F/ x
( ph  /\  y  =  B )
35 simpr 103 . . . . . . . 8  |-  ( (
ph  /\  y  =  B )  ->  y  =  B )
3635eqeq2d 2051 . . . . . . 7  |-  ( (
ph  /\  y  =  B )  ->  (
x  =  y  <->  x  =  B ) )
3736bibi2d 221 . . . . . 6  |-  ( (
ph  /\  y  =  B )  ->  (
( ps  <->  x  =  y )  <->  ( ps  <->  x  =  B ) ) )
3834, 37ralbid 2324 . . . . 5  |-  ( (
ph  /\  y  =  B )  ->  ( A. x  e.  A  ( ps  <->  x  =  y
)  <->  A. x  e.  A  ( ps  <->  x  =  B
) ) )
3935eqeq2d 2051 . . . . 5  |-  ( (
ph  /\  y  =  B )  ->  (
( iota_ x  e.  A  ps )  =  y  <->  (
iota_ x  e.  A  ps )  =  B
) )
4038, 39imbi12d 223 . . . 4  |-  ( (
ph  /\  y  =  B )  ->  (
( A. x  e.  A  ( ps  <->  x  =  y )  ->  ( iota_ x  e.  A  ps )  =  y )  <->  ( A. x  e.  A  ( ps  <->  x  =  B
)  ->  ( iota_ x  e.  A  ps )  =  B ) ) )
413, 40sbcied 2799 . . 3  |-  ( ph  ->  ( [. B  / 
y ]. ( A. x  e.  A  ( ps  <->  x  =  y )  -> 
( iota_ x  e.  A  ps )  =  y
)  <->  ( A. x  e.  A  ( ps  <->  x  =  B )  -> 
( iota_ x  e.  A  ps )  =  B
) ) )
4230, 41mpbid 135 . 2  |-  ( ph  ->  ( A. x  e.  A  ( ps  <->  x  =  B )  ->  ( iota_ x  e.  A  ps )  =  B )
)
432, 42mpd 13 1  |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   T. wtru 1244    e. wcel 1393   F/_wnfc 2165   A.wral 2306   E!wreu 2308   [.wsbc 2764   iota_crio 5467
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-v 2559  df-sbc 2765  df-un 2922  df-sn 3381  df-pr 3382  df-uni 3581  df-iota 4867  df-riota 5468
This theorem is referenced by:  riota5  5493
  Copyright terms: Public domain W3C validator