ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvopab1 Unicode version

Theorem cbvopab1 3827
Description: Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
cbvopab1.1  |-  F/ z
ph
cbvopab1.2  |-  F/ x ps
cbvopab1.3  |-  ( x  =  z  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvopab1  |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  ps }
Distinct variable groups:    x, y    y,
z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem cbvopab1
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1421 . . . . 5  |-  F/ v E. y ( w  =  <. x ,  y
>.  /\  ph )
2 nfv 1421 . . . . . . 7  |-  F/ x  w  =  <. v ,  y >.
3 nfs1v 1815 . . . . . . 7  |-  F/ x [ v  /  x ] ph
42, 3nfan 1457 . . . . . 6  |-  F/ x
( w  =  <. v ,  y >.  /\  [
v  /  x ] ph )
54nfex 1528 . . . . 5  |-  F/ x E. y ( w  = 
<. v ,  y >.  /\  [ v  /  x ] ph )
6 opeq1 3546 . . . . . . . 8  |-  ( x  =  v  ->  <. x ,  y >.  =  <. v ,  y >. )
76eqeq2d 2051 . . . . . . 7  |-  ( x  =  v  ->  (
w  =  <. x ,  y >.  <->  w  =  <. v ,  y >.
) )
8 sbequ12 1654 . . . . . . 7  |-  ( x  =  v  ->  ( ph 
<->  [ v  /  x ] ph ) )
97, 8anbi12d 442 . . . . . 6  |-  ( x  =  v  ->  (
( w  =  <. x ,  y >.  /\  ph ) 
<->  ( w  =  <. v ,  y >.  /\  [
v  /  x ] ph ) ) )
109exbidv 1706 . . . . 5  |-  ( x  =  v  ->  ( E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. y
( w  =  <. v ,  y >.  /\  [
v  /  x ] ph ) ) )
111, 5, 10cbvex 1639 . . . 4  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ph ) 
<->  E. v E. y
( w  =  <. v ,  y >.  /\  [
v  /  x ] ph ) )
12 nfv 1421 . . . . . . 7  |-  F/ z  w  =  <. v ,  y >.
13 cbvopab1.1 . . . . . . . 8  |-  F/ z
ph
1413nfsb 1822 . . . . . . 7  |-  F/ z [ v  /  x ] ph
1512, 14nfan 1457 . . . . . 6  |-  F/ z ( w  =  <. v ,  y >.  /\  [
v  /  x ] ph )
1615nfex 1528 . . . . 5  |-  F/ z E. y ( w  =  <. v ,  y
>.  /\  [ v  /  x ] ph )
17 nfv 1421 . . . . 5  |-  F/ v E. y ( w  =  <. z ,  y
>.  /\  ps )
18 opeq1 3546 . . . . . . . 8  |-  ( v  =  z  ->  <. v ,  y >.  =  <. z ,  y >. )
1918eqeq2d 2051 . . . . . . 7  |-  ( v  =  z  ->  (
w  =  <. v ,  y >.  <->  w  =  <. z ,  y >.
) )
20 sbequ 1721 . . . . . . . 8  |-  ( v  =  z  ->  ( [ v  /  x ] ph  <->  [ z  /  x ] ph ) )
21 cbvopab1.2 . . . . . . . . 9  |-  F/ x ps
22 cbvopab1.3 . . . . . . . . 9  |-  ( x  =  z  ->  ( ph 
<->  ps ) )
2321, 22sbie 1674 . . . . . . . 8  |-  ( [ z  /  x ] ph 
<->  ps )
2420, 23syl6bb 185 . . . . . . 7  |-  ( v  =  z  ->  ( [ v  /  x ] ph  <->  ps ) )
2519, 24anbi12d 442 . . . . . 6  |-  ( v  =  z  ->  (
( w  =  <. v ,  y >.  /\  [
v  /  x ] ph )  <->  ( w  = 
<. z ,  y >.  /\  ps ) ) )
2625exbidv 1706 . . . . 5  |-  ( v  =  z  ->  ( E. y ( w  = 
<. v ,  y >.  /\  [ v  /  x ] ph )  <->  E. y
( w  =  <. z ,  y >.  /\  ps ) ) )
2716, 17, 26cbvex 1639 . . . 4  |-  ( E. v E. y ( w  =  <. v ,  y >.  /\  [
v  /  x ] ph )  <->  E. z E. y
( w  =  <. z ,  y >.  /\  ps ) )
2811, 27bitri 173 . . 3  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ph ) 
<->  E. z E. y
( w  =  <. z ,  y >.  /\  ps ) )
2928abbii 2153 . 2  |-  { w  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  =  {
w  |  E. z E. y ( w  = 
<. z ,  y >.  /\  ps ) }
30 df-opab 3816 . 2  |-  { <. x ,  y >.  |  ph }  =  { w  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }
31 df-opab 3816 . 2  |-  { <. z ,  y >.  |  ps }  =  { w  |  E. z E. y
( w  =  <. z ,  y >.  /\  ps ) }
3229, 30, 313eqtr4i 2070 1  |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   F/wnf 1349   E.wex 1381   [wsb 1645   {cab 2026   <.cop 3375   {copab 3814
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2556  df-un 2919  df-sn 3378  df-pr 3379  df-op 3381  df-opab 3816
This theorem is referenced by:  cbvopab1v  3830  cbvmpt  3848
  Copyright terms: Public domain W3C validator