![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abbii | Unicode version |
Description: Equivalent wff's yield equal class abstractions (inference rule). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abbii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
abbii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2151 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | abbii.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpgbi 1341 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 |
This theorem is referenced by: rabswap 2488 rabbiia 2547 rabab 2575 csb2 2854 cbvcsb 2856 csbid 2859 csbco 2861 cbvreucsf 2910 unrab 3208 inrab 3209 inrab2 3210 difrab 3211 rabun2 3216 dfnul3 3227 rab0 3246 tprot 3463 pw0 3511 dfuni2 3582 unipr 3594 dfint2 3617 int0 3629 dfiunv2 3693 cbviun 3694 cbviin 3695 iunrab 3704 iunid 3712 viin 3716 cbvopab 3828 cbvopab1 3830 cbvopab2 3831 cbvopab1s 3832 cbvopab2v 3834 unopab 3836 iunopab 4018 uniuni 4183 ruv 4274 rabxp 4380 dfdm3 4522 dfrn2 4523 dfrn3 4524 dfdm4 4527 dfdmf 4528 dmun 4542 dmopab 4546 dmopabss 4547 dmopab3 4548 dfrnf 4575 rnopab 4581 rnmpt 4582 dfima2 4670 dfima3 4671 imadmrn 4678 imai 4681 args 4694 mptpreima 4814 dfiota2 4868 cbviota 4872 sb8iota 4874 dffv4g 5175 dfimafn2 5223 fnasrn 5341 fnasrng 5343 elabrex 5397 abrexco 5398 dfoprab2 5552 cbvoprab2 5577 dmoprab 5585 rnoprab 5587 rnoprab2 5588 fnrnov 5646 abrexex2g 5747 abrexex2 5751 abexssex 5752 abexex 5753 oprabrexex2 5757 dfopab2 5815 frec0g 5983 frecsuc 5991 snec 6167 caucvgprprlemmu 6793 caucvgsr 6886 pitonnlem1 6921 bdcuni 9996 bj-dfom 10057 |
Copyright terms: Public domain | W3C validator |