![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfsb | Unicode version |
Description: If ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfsb.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfsb |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsb.1 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | nfsbxy 1815 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | nfsbxy 1815 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | ax-17 1416 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | sbco2v 1818 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | nfbii 1359 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 3, 6 | mpbi 133 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 |
This theorem depends on definitions: df-bi 110 df-nf 1347 df-sb 1643 |
This theorem is referenced by: hbsb 1820 sbco2yz 1834 sbcomxyyz 1843 hbsbd 1855 nfsb4or 1896 sb8eu 1910 nfeu 1916 cbvab 2157 cbvralf 2521 cbvrexf 2522 cbvreu 2525 cbvralsv 2538 cbvrexsv 2539 cbvrab 2549 cbvreucsf 2904 cbvrabcsf 2905 cbvopab1 3821 cbvmpt 3842 ralxpf 4425 rexxpf 4426 cbviota 4815 sb8iota 4817 cbvriota 5421 dfoprab4f 5761 |
Copyright terms: Public domain | W3C validator |