ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo2ilem Unicode version

Theorem rmo2ilem 2847
Description: Condition implying restricted "at most one." (Contributed by Jim Kingdon, 14-Jul-2018.)
Hypothesis
Ref Expression
rmo2.1  |-  F/ y
ph
Assertion
Ref Expression
rmo2ilem  |-  ( E. y A. x  e.  A  ( ph  ->  x  =  y )  ->  E* x  e.  A  ph )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem rmo2ilem
StepHypRef Expression
1 impexp 250 . . . . 5  |-  ( ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
21albii 1359 . . . 4  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
3 df-ral 2311 . . . 4  |-  ( A. x  e.  A  ( ph  ->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
42, 3bitr4i 176 . . 3  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  A. x  e.  A  ( ph  ->  x  =  y ) )
54exbii 1496 . 2  |-  ( E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  E. y A. x  e.  A  ( ph  ->  x  =  y ) )
6 nfv 1421 . . . . 5  |-  F/ y  x  e.  A
7 rmo2.1 . . . . 5  |-  F/ y
ph
86, 7nfan 1457 . . . 4  |-  F/ y ( x  e.  A  /\  ph )
98mo2r 1952 . . 3  |-  ( E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  ->  E* x ( x  e.  A  /\  ph )
)
10 df-rmo 2314 . . 3  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
119, 10sylibr 137 . 2  |-  ( E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  ->  E* x  e.  A  ph )
125, 11sylbir 125 1  |-  ( E. y A. x  e.  A  ( ph  ->  x  =  y )  ->  E* x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97   A.wal 1241    = wceq 1243   F/wnf 1349   E.wex 1381    e. wcel 1393   E*wmo 1901   A.wral 2306   E*wrmo 2309
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-ral 2311  df-rmo 2314
This theorem is referenced by:  rmo2i  2848
  Copyright terms: Public domain W3C validator