Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opabex3d | Unicode version |
Description: Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.) |
Ref | Expression |
---|---|
opabex3d.1 | |
opabex3d.2 |
Ref | Expression |
---|---|
opabex3d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42v 1786 | . . . . . 6 | |
2 | an12 495 | . . . . . . 7 | |
3 | 2 | exbii 1496 | . . . . . 6 |
4 | elxp 4362 | . . . . . . . 8 | |
5 | excom 1554 | . . . . . . . . 9 | |
6 | an12 495 | . . . . . . . . . . . . 13 | |
7 | velsn 3392 | . . . . . . . . . . . . . 14 | |
8 | 7 | anbi1i 431 | . . . . . . . . . . . . 13 |
9 | 6, 8 | bitri 173 | . . . . . . . . . . . 12 |
10 | 9 | exbii 1496 | . . . . . . . . . . 11 |
11 | vex 2560 | . . . . . . . . . . . 12 | |
12 | opeq1 3549 | . . . . . . . . . . . . . 14 | |
13 | 12 | eqeq2d 2051 | . . . . . . . . . . . . 13 |
14 | 13 | anbi1d 438 | . . . . . . . . . . . 12 |
15 | 11, 14 | ceqsexv 2593 | . . . . . . . . . . 11 |
16 | 10, 15 | bitri 173 | . . . . . . . . . 10 |
17 | 16 | exbii 1496 | . . . . . . . . 9 |
18 | 5, 17 | bitri 173 | . . . . . . . 8 |
19 | nfv 1421 | . . . . . . . . . 10 | |
20 | nfsab1 2030 | . . . . . . . . . 10 | |
21 | 19, 20 | nfan 1457 | . . . . . . . . 9 |
22 | nfv 1421 | . . . . . . . . 9 | |
23 | opeq2 3550 | . . . . . . . . . . 11 | |
24 | 23 | eqeq2d 2051 | . . . . . . . . . 10 |
25 | sbequ12 1654 | . . . . . . . . . . . 12 | |
26 | 25 | equcoms 1594 | . . . . . . . . . . 11 |
27 | df-clab 2027 | . . . . . . . . . . 11 | |
28 | 26, 27 | syl6rbbr 188 | . . . . . . . . . 10 |
29 | 24, 28 | anbi12d 442 | . . . . . . . . 9 |
30 | 21, 22, 29 | cbvex 1639 | . . . . . . . 8 |
31 | 4, 18, 30 | 3bitri 195 | . . . . . . 7 |
32 | 31 | anbi2i 430 | . . . . . 6 |
33 | 1, 3, 32 | 3bitr4ri 202 | . . . . 5 |
34 | 33 | exbii 1496 | . . . 4 |
35 | eliun 3661 | . . . . 5 | |
36 | df-rex 2312 | . . . . 5 | |
37 | 35, 36 | bitri 173 | . . . 4 |
38 | elopab 3995 | . . . 4 | |
39 | 34, 37, 38 | 3bitr4i 201 | . . 3 |
40 | 39 | eqriv 2037 | . 2 |
41 | opabex3d.1 | . . 3 | |
42 | snexg 3936 | . . . . . 6 | |
43 | 11, 42 | ax-mp 7 | . . . . 5 |
44 | opabex3d.2 | . . . . 5 | |
45 | xpexg 4452 | . . . . 5 | |
46 | 43, 44, 45 | sylancr 393 | . . . 4 |
47 | 46 | ralrimiva 2392 | . . 3 |
48 | iunexg 5746 | . . 3 | |
49 | 41, 47, 48 | syl2anc 391 | . 2 |
50 | 40, 49 | syl5eqelr 2125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wceq 1243 wex 1381 wcel 1393 wsb 1645 cab 2026 wral 2306 wrex 2307 cvv 2557 csn 3375 cop 3378 ciun 3657 copab 3817 cxp 4343 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 |
This theorem is referenced by: ovshftex 9420 |
Copyright terms: Public domain | W3C validator |