ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl5eqelr Unicode version

Theorem syl5eqelr 2122
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
syl5eqelr.1
syl5eqelr.2  C
Assertion
Ref Expression
syl5eqelr  C

Proof of Theorem syl5eqelr
StepHypRef Expression
1 syl5eqelr.1 . . 3
21eqcomi 2041 . 2
3 syl5eqelr.2 . 2  C
42, 3syl5eqel 2121 1  C
Colors of variables: wff set class
Syntax hints:   wi 4   wceq 1242   wcel 1390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416  ax-ial 1424  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-cleq 2030  df-clel 2033
This theorem is referenced by:  dmrnssfld  4538  cnvexg  4798  opabbrex  5491  offval  5661  resfunexgALT  5679  abrexexg  5687  abrexex2g  5689  opabex3d  5690  nqprlu  6530  iccshftr  8632  iccshftl  8634  iccdil  8636  icccntr  8638
  Copyright terms: Public domain W3C validator