| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fv3 | Unicode version | ||
| Description: Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fv3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfv 5176 |
. . 3
| |
| 2 | bi2 121 |
. . . . . . . . . 10
| |
| 3 | 2 | alimi 1344 |
. . . . . . . . 9
|
| 4 | vex 2560 |
. . . . . . . . . 10
| |
| 5 | breq2 3768 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | ceqsalv 2584 |
. . . . . . . . 9
|
| 7 | 3, 6 | sylib 127 |
. . . . . . . 8
|
| 8 | 7 | anim2i 324 |
. . . . . . 7
|
| 9 | 8 | eximi 1491 |
. . . . . 6
|
| 10 | elequ2 1601 |
. . . . . . . 8
| |
| 11 | breq2 3768 |
. . . . . . . 8
| |
| 12 | 10, 11 | anbi12d 442 |
. . . . . . 7
|
| 13 | 12 | cbvexv 1795 |
. . . . . 6
|
| 14 | 9, 13 | sylib 127 |
. . . . 5
|
| 15 | exsimpr 1509 |
. . . . . 6
| |
| 16 | df-eu 1903 |
. . . . . 6
| |
| 17 | 15, 16 | sylibr 137 |
. . . . 5
|
| 18 | 14, 17 | jca 290 |
. . . 4
|
| 19 | nfeu1 1911 |
. . . . . . 7
| |
| 20 | nfv 1421 |
. . . . . . . . 9
| |
| 21 | nfa1 1434 |
. . . . . . . . 9
| |
| 22 | 20, 21 | nfan 1457 |
. . . . . . . 8
|
| 23 | 22 | nfex 1528 |
. . . . . . 7
|
| 24 | 19, 23 | nfim 1464 |
. . . . . 6
|
| 25 | bi1 111 |
. . . . . . . . . . . . . 14
| |
| 26 | ax-14 1405 |
. . . . . . . . . . . . . 14
| |
| 27 | 25, 26 | syl6 29 |
. . . . . . . . . . . . 13
|
| 28 | 27 | com23 72 |
. . . . . . . . . . . 12
|
| 29 | 28 | impd 242 |
. . . . . . . . . . 11
|
| 30 | 29 | sps 1430 |
. . . . . . . . . 10
|
| 31 | 30 | anc2ri 313 |
. . . . . . . . 9
|
| 32 | 31 | com12 27 |
. . . . . . . 8
|
| 33 | 32 | eximdv 1760 |
. . . . . . 7
|
| 34 | 16, 33 | syl5bi 141 |
. . . . . 6
|
| 35 | 24, 34 | exlimi 1485 |
. . . . 5
|
| 36 | 35 | imp 115 |
. . . 4
|
| 37 | 18, 36 | impbii 117 |
. . 3
|
| 38 | 1, 37 | bitri 173 |
. 2
|
| 39 | 38 | abbi2i 2152 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
| This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-iota 4867 df-fv 4910 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |