![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimi | Unicode version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
exlimi.1 |
![]() ![]() ![]() ![]() |
exlimi.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
exlimi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimi.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | nfri 1412 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | exlimi.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | exlimih 1484 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-gen 1338 ax-ie2 1383 ax-4 1400 |
This theorem depends on definitions: df-bi 110 df-nf 1350 |
This theorem is referenced by: 19.36i 1562 euexex 1985 ceqsex 2592 sbhypf 2603 vtoclgf 2612 vtoclef 2626 copsexg 3981 copsex2g 3983 ralxpf 4482 rexxpf 4483 dmcoss 4601 fv3 5197 tz6.12c 5203 0neqopab 5550 bj-exlimmpi 9910 |
Copyright terms: Public domain | W3C validator |