![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvres | Unicode version |
Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fvres |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2560 |
. . . . 5
![]() ![]() ![]() ![]() | |
2 | 1 | brres 4618 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | rbaib 830 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | iotabidv 4888 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | df-fv 4910 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | df-fv 4910 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 4, 5, 6 | 3eqtr4g 2097 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-xp 4351 df-res 4357 df-iota 4867 df-fv 4910 |
This theorem is referenced by: funssfv 5199 feqresmpt 5227 fvreseq 5271 respreima 5295 ffvresb 5328 fnressn 5349 fressnfv 5350 fvresi 5356 fvunsng 5357 fvsnun1 5360 fvsnun2 5361 fsnunfv 5363 funfvima 5390 isoresbr 5449 isores3 5455 isoini2 5458 ovres 5640 ofres 5725 offres 5762 fo1stresm 5788 fo2ndresm 5789 fo2ndf 5848 f1o2ndf1 5849 smores 5907 smores2 5909 tfrlem1 5923 rdgival 5969 rdgon 5973 frec0g 5983 frecsuclem1 5987 frecsuclem2 5989 frecrdg 5992 addpiord 6414 mulpiord 6415 fseq1p1m1 8956 iseqfeq2 9229 shftidt 9434 climres 9824 |
Copyright terms: Public domain | W3C validator |