ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoini2 Unicode version

Theorem isoini2 5458
Description: Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.)
Hypotheses
Ref Expression
isoini2.1  |-  C  =  ( A  i^i  ( `' R " { X } ) )
isoini2.2  |-  D  =  ( B  i^i  ( `' S " { ( H `  X ) } ) )
Assertion
Ref Expression
isoini2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C )  Isom  R ,  S  ( C ,  D ) )

Proof of Theorem isoini2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5447 . . . . . 6  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
2 f1of1 5125 . . . . . 6  |-  ( H : A -1-1-onto-> B  ->  H : A -1-1-> B )
31, 2syl 14 . . . . 5  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-> B )
43adantr 261 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  H : A -1-1-> B )
5 isoini2.1 . . . . 5  |-  C  =  ( A  i^i  ( `' R " { X } ) )
6 inss1 3157 . . . . 5  |-  ( A  i^i  ( `' R " { X } ) )  C_  A
75, 6eqsstri 2975 . . . 4  |-  C  C_  A
8 f1ores 5141 . . . 4  |-  ( ( H : A -1-1-> B  /\  C  C_  A )  ->  ( H  |`  C ) : C -1-1-onto-> ( H " C ) )
94, 7, 8sylancl 392 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C ) : C -1-1-onto-> ( H " C
) )
10 isoini 5457 . . . . 5  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H " ( A  i^i  ( `' R " { X } ) ) )  =  ( B  i^i  ( `' S " { ( H `  X ) } ) ) )
115imaeq2i 4666 . . . . 5  |-  ( H
" C )  =  ( H " ( A  i^i  ( `' R " { X } ) ) )
12 isoini2.2 . . . . 5  |-  D  =  ( B  i^i  ( `' S " { ( H `  X ) } ) )
1310, 11, 123eqtr4g 2097 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H " C )  =  D )
14 f1oeq3 5119 . . . 4  |-  ( ( H " C )  =  D  ->  (
( H  |`  C ) : C -1-1-onto-> ( H " C
)  <->  ( H  |`  C ) : C -1-1-onto-> D
) )
1513, 14syl 14 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  (
( H  |`  C ) : C -1-1-onto-> ( H " C
)  <->  ( H  |`  C ) : C -1-1-onto-> D
) )
169, 15mpbid 135 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C ) : C -1-1-onto-> D )
17 df-isom 4911 . . . . . . 7  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
1817simprbi 260 . . . . . 6  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )
1918adantr 261 . . . . 5  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
20 ssralv 3004 . . . . . 6  |-  ( C 
C_  A  ->  ( A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  ->  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
2120ralimdv 2388 . . . . 5  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  ->  A. x  e.  A  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
227, 19, 21mpsyl 59 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  A  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
23 ssralv 3004 . . . 4  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  ->  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
247, 22, 23mpsyl 59 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  C  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
25 fvres 5198 . . . . . . 7  |-  ( x  e.  C  ->  (
( H  |`  C ) `
 x )  =  ( H `  x
) )
26 fvres 5198 . . . . . . 7  |-  ( y  e.  C  ->  (
( H  |`  C ) `
 y )  =  ( H `  y
) )
2725, 26breqan12d 3779 . . . . . 6  |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( ( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y )  <->  ( H `  x ) S ( H `  y ) ) )
2827bibi2d 221 . . . . 5  |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( ( x R y  <->  ( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y ) )  <->  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
2928ralbidva 2322 . . . 4  |-  ( x  e.  C  ->  ( A. y  e.  C  ( x R y  <-> 
( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y ) )  <->  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
3029ralbiia 2338 . . 3  |-  ( A. x  e.  C  A. y  e.  C  (
x R y  <->  ( ( H  |`  C ) `  x ) S ( ( H  |`  C ) `
 y ) )  <->  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )
3124, 30sylibr 137 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  C  A. y  e.  C  ( x R y  <->  ( ( H  |`  C ) `  x ) S ( ( H  |`  C ) `
 y ) ) )
32 df-isom 4911 . 2  |-  ( ( H  |`  C )  Isom  R ,  S  ( C ,  D )  <-> 
( ( H  |`  C ) : C -1-1-onto-> D  /\  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y ) ) ) )
3316, 31, 32sylanbrc 394 1  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C )  Isom  R ,  S  ( C ,  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   A.wral 2306    i^i cin 2916    C_ wss 2917   {csn 3375   class class class wbr 3764   `'ccnv 4344    |` cres 4347   "cima 4348   -1-1->wf1 4899   -1-1-onto->wf1o 4901   ` cfv 4902    Isom wiso 4903
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-isom 4911
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator