ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnressn Unicode version

Theorem fnressn 5349
Description: A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
fnressn  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } )

Proof of Theorem fnressn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sneq 3386 . . . . . 6  |-  ( x  =  B  ->  { x }  =  { B } )
21reseq2d 4612 . . . . 5  |-  ( x  =  B  ->  ( F  |`  { x }
)  =  ( F  |`  { B } ) )
3 fveq2 5178 . . . . . . 7  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
4 opeq12 3551 . . . . . . 7  |-  ( ( x  =  B  /\  ( F `  x )  =  ( F `  B ) )  ->  <. x ,  ( F `
 x ) >.  =  <. B ,  ( F `  B )
>. )
53, 4mpdan 398 . . . . . 6  |-  ( x  =  B  ->  <. x ,  ( F `  x ) >.  =  <. B ,  ( F `  B ) >. )
65sneqd 3388 . . . . 5  |-  ( x  =  B  ->  { <. x ,  ( F `  x ) >. }  =  { <. B ,  ( F `  B )
>. } )
72, 6eqeq12d 2054 . . . 4  |-  ( x  =  B  ->  (
( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } 
<->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } ) )
87imbi2d 219 . . 3  |-  ( x  =  B  ->  (
( F  Fn  A  ->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } )  <->  ( F  Fn  A  ->  ( F  |`  { B } )  =  { <. B , 
( F `  B
) >. } ) ) )
9 vex 2560 . . . . . . 7  |-  x  e. 
_V
109snss 3494 . . . . . 6  |-  ( x  e.  A  <->  { x }  C_  A )
11 fnssres 5012 . . . . . 6  |-  ( ( F  Fn  A  /\  { x }  C_  A
)  ->  ( F  |` 
{ x } )  Fn  { x }
)
1210, 11sylan2b 271 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F  |`  { x } )  Fn  {
x } )
13 dffn2 5047 . . . . . . 7  |-  ( ( F  |`  { x } )  Fn  {
x }  <->  ( F  |` 
{ x } ) : { x } --> _V )
149fsn2 5337 . . . . . . 7  |-  ( ( F  |`  { x } ) : {
x } --> _V  <->  ( (
( F  |`  { x } ) `  x
)  e.  _V  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } ) )
1513, 14bitri 173 . . . . . 6  |-  ( ( F  |`  { x } )  Fn  {
x }  <->  ( (
( F  |`  { x } ) `  x
)  e.  _V  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } ) )
16 vsnid 3403 . . . . . . . . . . 11  |-  x  e. 
{ x }
17 fvres 5198 . . . . . . . . . . 11  |-  ( x  e.  { x }  ->  ( ( F  |`  { x } ) `
 x )  =  ( F `  x
) )
1816, 17ax-mp 7 . . . . . . . . . 10  |-  ( ( F  |`  { x } ) `  x
)  =  ( F `
 x )
1918opeq2i 3553 . . . . . . . . 9  |-  <. x ,  ( ( F  |`  { x } ) `
 x ) >.  =  <. x ,  ( F `  x )
>.
2019sneqi 3387 . . . . . . . 8  |-  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. }  =  { <. x ,  ( F `  x ) >. }
2120eqeq2i 2050 . . . . . . 7  |-  ( ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. }  <->  ( F  |` 
{ x } )  =  { <. x ,  ( F `  x ) >. } )
22 snssi 3508 . . . . . . . . . 10  |-  ( x  e.  A  ->  { x }  C_  A )
2322, 11sylan2 270 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F  |`  { x } )  Fn  {
x } )
24 funfvex 5192 . . . . . . . . . 10  |-  ( ( Fun  ( F  |`  { x } )  /\  x  e.  dom  ( F  |`  { x } ) )  -> 
( ( F  |`  { x } ) `
 x )  e. 
_V )
2524funfni 4999 . . . . . . . . 9  |-  ( ( ( F  |`  { x } )  Fn  {
x }  /\  x  e.  { x } )  ->  ( ( F  |`  { x } ) `
 x )  e. 
_V )
2623, 16, 25sylancl 392 . . . . . . . 8  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F  |`  { x } ) `
 x )  e. 
_V )
2726biantrurd 289 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. } 
<->  ( ( ( F  |`  { x } ) `
 x )  e. 
_V  /\  ( F  |` 
{ x } )  =  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. } ) ) )
2821, 27syl5rbbr 184 . . . . . 6  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( ( ( F  |`  { x } ) `  x
)  e.  _V  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } )  <->  ( F  |` 
{ x } )  =  { <. x ,  ( F `  x ) >. } ) )
2915, 28syl5bb 181 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F  |`  { x } )  Fn  { x }  <->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } ) )
3012, 29mpbid 135 . . . 4  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } )
3130expcom 109 . . 3  |-  ( x  e.  A  ->  ( F  Fn  A  ->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } ) )
328, 31vtoclga 2619 . 2  |-  ( B  e.  A  ->  ( F  Fn  A  ->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } ) )
3332impcom 116 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   _Vcvv 2557    C_ wss 2917   {csn 3375   <.cop 3378    |` cres 4347    Fn wfn 4897   -->wf 4898   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910
This theorem is referenced by:  fressnfv  5350  dif1en  6337  fseq1p1m1  8956
  Copyright terms: Public domain W3C validator