ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snss Unicode version

Theorem snss 3494
Description: The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
snss.1  |-  A  e. 
_V
Assertion
Ref Expression
snss  |-  ( A  e.  B  <->  { A }  C_  B )

Proof of Theorem snss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 velsn 3392 . . . 4  |-  ( x  e.  { A }  <->  x  =  A )
21imbi1i 227 . . 3  |-  ( ( x  e.  { A }  ->  x  e.  B
)  <->  ( x  =  A  ->  x  e.  B ) )
32albii 1359 . 2  |-  ( A. x ( x  e. 
{ A }  ->  x  e.  B )  <->  A. x
( x  =  A  ->  x  e.  B
) )
4 dfss2 2934 . 2  |-  ( { A }  C_  B  <->  A. x ( x  e. 
{ A }  ->  x  e.  B ) )
5 snss.1 . . 3  |-  A  e. 
_V
65clel2 2677 . 2  |-  ( A  e.  B  <->  A. x
( x  =  A  ->  x  e.  B
) )
73, 4, 63bitr4ri 202 1  |-  ( A  e.  B  <->  { A }  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98   A.wal 1241    = wceq 1243    e. wcel 1393   _Vcvv 2557    C_ wss 2917   {csn 3375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-in 2924  df-ss 2931  df-sn 3381
This theorem is referenced by:  snssg  3500  prss  3520  tpss  3529  snelpw  3949  sspwb  3952  mss  3962  exss  3963  reg2exmidlema  4259  elnn  4328  relsn  4443  fnressn  5349  un0mulcl  8216  nn0ssz  8263  bdsnss  9993
  Copyright terms: Public domain W3C validator