ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuclem2 Unicode version

Theorem frecsuclem2 5989
Description: Lemma for frecsuc 5991. (Contributed by Jim Kingdon, 15-Aug-2019.)
Hypothesis
Ref Expression
frecsuclem1.h  |-  G  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
Assertion
Ref Expression
frecsuclem2  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( (recs ( G )  |`  suc  B
) `  B )  =  (frec ( F ,  A ) `  B
) )
Distinct variable groups:    A, g, m, x, z    B, g, m, x, z    g, F, m, x, z    g, G, m, x, z    g, V, m, x
Allowed substitution hint:    V( z)

Proof of Theorem frecsuclem2
StepHypRef Expression
1 sucidg 4153 . . . 4  |-  ( B  e.  om  ->  B  e.  suc  B )
2 fvres 5198 . . . 4  |-  ( B  e.  suc  B  -> 
( (recs ( G )  |`  suc  B ) `
 B )  =  (recs ( G ) `
 B ) )
31, 2syl 14 . . 3  |-  ( B  e.  om  ->  (
(recs ( G )  |`  suc  B ) `  B )  =  (recs ( G ) `  B ) )
4 df-frec 5978 . . . . . 6  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
5 frecsuclem1.h . . . . . . . 8  |-  G  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
6 recseq 5921 . . . . . . . 8  |-  ( G  =  ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  -> recs ( G
)  = recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) )
75, 6ax-mp 7 . . . . . . 7  |- recs ( G )  = recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
87reseq1i 4608 . . . . . 6  |-  (recs ( G )  |`  om )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
94, 8eqtr4i 2063 . . . . 5  |- frec ( F ,  A )  =  (recs ( G )  |`  om )
109fveq1i 5179 . . . 4  |-  (frec ( F ,  A ) `
 B )  =  ( (recs ( G )  |`  om ) `  B )
11 fvres 5198 . . . 4  |-  ( B  e.  om  ->  (
(recs ( G )  |`  om ) `  B
)  =  (recs ( G ) `  B
) )
1210, 11syl5eq 2084 . . 3  |-  ( B  e.  om  ->  (frec ( F ,  A ) `
 B )  =  (recs ( G ) `
 B ) )
133, 12eqtr4d 2075 . 2  |-  ( B  e.  om  ->  (
(recs ( G )  |`  suc  B ) `  B )  =  (frec ( F ,  A
) `  B )
)
14133ad2ant3 927 1  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( (recs ( G )  |`  suc  B
) `  B )  =  (frec ( F ,  A ) `  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    \/ wo 629    /\ w3a 885   A.wal 1241    = wceq 1243    e. wcel 1393   {cab 2026   E.wrex 2307   _Vcvv 2557   (/)c0 3224    |-> cmpt 3818   suc csuc 4102   omcom 4313   dom cdm 4345    |` cres 4347   ` cfv 4902  recscrecs 5919  freccfrec 5977
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-suc 4108  df-xp 4351  df-res 4357  df-iota 4867  df-fv 4910  df-recs 5920  df-frec 5978
This theorem is referenced by:  frecsuclem3  5990
  Copyright terms: Public domain W3C validator