![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abbi2i | Unicode version |
Description: Equality of a class variable and a class abstraction (inference rule). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abbiri.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
abbi2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2 2143 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | abbiri.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpgbir 1339 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-11 1394 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 |
This theorem is referenced by: abid2 2155 cbvralcsf 2902 cbvrexcsf 2903 cbvreucsf 2904 cbvrabcsf 2905 symdifxor 3197 dfnul2 3220 dfpr2 3383 dftp2 3410 0iin 3706 epse 4064 fv3 5140 fo1st 5726 fo2nd 5727 xp2 5741 tfrlem3 5867 nnzrab 8045 nn0zrab 8046 |
Copyright terms: Public domain | W3C validator |