Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qsss | Unicode version |
Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
qsss.1 |
Ref | Expression |
---|---|
qsss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2560 | . . . 4 | |
2 | 1 | elqs 6157 | . . 3 |
3 | qsss.1 | . . . . . . 7 | |
4 | 3 | ecss 6147 | . . . . . 6 |
5 | sseq1 2966 | . . . . . 6 | |
6 | 4, 5 | syl5ibrcom 146 | . . . . 5 |
7 | selpw 3366 | . . . . 5 | |
8 | 6, 7 | syl6ibr 151 | . . . 4 |
9 | 8 | rexlimdvw 2436 | . . 3 |
10 | 2, 9 | syl5bi 141 | . 2 |
11 | 10 | ssrdv 2951 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1243 wcel 1393 wrex 2307 wss 2917 cpw 3359 wer 6103 cec 6104 cqs 6105 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-xp 4351 df-rel 4352 df-cnv 4353 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-er 6106 df-ec 6108 df-qs 6112 |
This theorem is referenced by: axcnex 6935 |
Copyright terms: Public domain | W3C validator |