ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq1 Unicode version

Theorem sumeq1 9874
Description: Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Assertion
Ref Expression
sumeq1  |-  ( A  =  B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)

Proof of Theorem sumeq1
Dummy variables  f  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 2966 . . . . . 6  |-  ( A  =  B  ->  ( A  C_  ( ZZ>= `  m
)  <->  B  C_  ( ZZ>= `  m ) ) )
2 simpl 102 . . . . . . . . . . 11  |-  ( ( A  =  B  /\  n  e.  ZZ )  ->  A  =  B )
32eleq2d 2107 . . . . . . . . . 10  |-  ( ( A  =  B  /\  n  e.  ZZ )  ->  ( n  e.  A  <->  n  e.  B ) )
43ifbid 3349 . . . . . . . . 9  |-  ( ( A  =  B  /\  n  e.  ZZ )  ->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 )  =  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) )
54mpteq2dva 3847 . . . . . . . 8  |-  ( A  =  B  ->  (
n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) )  =  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )
6 iseqeq3 9216 . . . . . . . 8  |-  ( ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) )  =  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) )  ->  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  =  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC ) )
75, 6syl 14 . . . . . . 7  |-  ( A  =  B  ->  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  =  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC ) )
87breq1d 3774 . . . . . 6  |-  ( A  =  B  ->  (  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x  <->  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x ) )
91, 8anbi12d 442 . . . . 5  |-  ( A  =  B  ->  (
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  <->  ( B  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x ) ) )
109rexbidv 2327 . . . 4  |-  ( A  =  B  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  <->  E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x ) ) )
11 f1oeq3 5119 . . . . . . 7  |-  ( A  =  B  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... m
)
-1-1-onto-> B ) )
1211anbi1d 438 . . . . . 6  |-  ( A  =  B  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ,  CC ) `  m )
)  <->  ( f : ( 1 ... m
)
-1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ,  CC ) `  m )
) ) )
1312exbidv 1706 . . . . 5  |-  ( A  =  B  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ,  CC ) `  m )
)  <->  E. f ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ C
) ,  CC ) `
 m ) ) ) )
1413rexbidv 2327 . . . 4  |-  ( A  =  B  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ,  CC ) `  m )
)  <->  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ,  CC ) `  m )
) ) )
1510, 14orbi12d 707 . . 3  |-  ( A  =  B  ->  (
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ,  CC ) `  m )
) )  <->  ( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ,  CC ) `  m )
) ) ) )
1615iotabidv 4888 . 2  |-  ( A  =  B  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ,  CC ) `  m )
) ) )  =  ( iota x ( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ,  CC ) `  m )
) ) ) )
17 df-sum 9873 . 2  |-  sum_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ,  CC ) `  m )
) ) )
18 df-sum 9873 . 2  |-  sum_ k  e.  B  C  =  ( iota x ( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ,  CC ) `  m )
) ) )
1916, 17, 183eqtr4g 2097 1  |-  ( A  =  B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    \/ wo 629    = wceq 1243   E.wex 1381    e. wcel 1393   E.wrex 2307   [_csb 2852    C_ wss 2917   ifcif 3331   class class class wbr 3764    |-> cmpt 3818   iotacio 4865   -1-1-onto->wf1o 4901   ` cfv 4902  (class class class)co 5512   CCcc 6887   0cc0 6889   1c1 6890    + caddc 6892   NNcn 7914   ZZcz 8245   ZZ>=cuz 8473   ...cfz 8874    seqcseq 9211    ~~> cli 9799   sum_csu 9872
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-if 3332  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357  df-iota 4867  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-recs 5920  df-frec 5978  df-iseq 9212  df-sum 9873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator