Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluz2 | Unicode version |
Description: Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show . (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluz2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 8478 | . 2 | |
2 | simp1 904 | . 2 | |
3 | eluz1 8477 | . . . 4 | |
4 | ibar 285 | . . . 4 | |
5 | 3, 4 | bitrd 177 | . . 3 |
6 | 3anass 889 | . . 3 | |
7 | 5, 6 | syl6bbr 187 | . 2 |
8 | 1, 2, 7 | pm5.21nii 620 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 97 wb 98 w3a 885 wcel 1393 class class class wbr 3764 cfv 4902 cle 7061 cz 8245 cuz 8473 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-cnex 6975 ax-resscn 6976 |
This theorem depends on definitions: df-bi 110 df-3or 886 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-sbc 2765 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-fv 4910 df-ov 5515 df-neg 7185 df-z 8246 df-uz 8474 |
This theorem is referenced by: eluzuzle 8481 eluzelz 8482 eluzle 8485 uztrn 8489 eluzp1p1 8498 uznn0sub 8504 uz3m2nn 8515 1eluzge0 8516 2eluzge0OLD 8518 2eluzge1 8519 raluz2 8522 rexuz2 8524 peano2uz 8526 nn0pzuz 8530 uzind4 8531 nn0ge2m1nnALT 8553 elfzuzb 8884 uzsubsubfz 8911 ige2m1fz 8972 elfz0addOLD 8980 4fvwrd4 8997 elfzo2 9007 elfzouz2 9017 fzossrbm1 9029 fzossfzop1 9068 ssfzo12bi 9081 elfzonelfzo 9086 elfzomelpfzo 9087 fzosplitprm1 9090 fzostep1 9093 fzind2 9095 flqword2 9131 fldiv4p1lem1div2 9147 resqrexlemoverl 9619 resqrexlemga 9621 |
Copyright terms: Public domain | W3C validator |