ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isocnv2 Unicode version

Theorem isocnv2 5452
Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
isocnv2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  `' R ,  `' S ( A ,  B ) )

Proof of Theorem isocnv2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5447 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
2 f1ofn 5127 . . 3  |-  ( H : A -1-1-onto-> B  ->  H  Fn  A )
31, 2syl 14 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H  Fn  A
)
4 isof1o 5447 . . 3  |-  ( H 
Isom  `' R ,  `' S
( A ,  B
)  ->  H : A
-1-1-onto-> B )
54, 2syl 14 . 2  |-  ( H 
Isom  `' R ,  `' S
( A ,  B
)  ->  H  Fn  A )
6 vex 2560 . . . . . . . . . 10  |-  x  e. 
_V
7 vex 2560 . . . . . . . . . 10  |-  y  e. 
_V
86, 7brcnv 4518 . . . . . . . . 9  |-  ( x `' R y  <->  y R x )
98a1i 9 . . . . . . . 8  |-  ( ( ( H  Fn  A  /\  x  e.  A
)  /\  y  e.  A )  ->  (
x `' R y  <-> 
y R x ) )
10 funfvex 5192 . . . . . . . . . . 11  |-  ( ( Fun  H  /\  x  e.  dom  H )  -> 
( H `  x
)  e.  _V )
1110funfni 4999 . . . . . . . . . 10  |-  ( ( H  Fn  A  /\  x  e.  A )  ->  ( H `  x
)  e.  _V )
1211adantr 261 . . . . . . . . 9  |-  ( ( ( H  Fn  A  /\  x  e.  A
)  /\  y  e.  A )  ->  ( H `  x )  e.  _V )
13 funfvex 5192 . . . . . . . . . . 11  |-  ( ( Fun  H  /\  y  e.  dom  H )  -> 
( H `  y
)  e.  _V )
1413funfni 4999 . . . . . . . . . 10  |-  ( ( H  Fn  A  /\  y  e.  A )  ->  ( H `  y
)  e.  _V )
1514adantlr 446 . . . . . . . . 9  |-  ( ( ( H  Fn  A  /\  x  e.  A
)  /\  y  e.  A )  ->  ( H `  y )  e.  _V )
16 brcnvg 4516 . . . . . . . . 9  |-  ( ( ( H `  x
)  e.  _V  /\  ( H `  y )  e.  _V )  -> 
( ( H `  x ) `' S
( H `  y
)  <->  ( H `  y ) S ( H `  x ) ) )
1712, 15, 16syl2anc 391 . . . . . . . 8  |-  ( ( ( H  Fn  A  /\  x  e.  A
)  /\  y  e.  A )  ->  (
( H `  x
) `' S ( H `  y )  <-> 
( H `  y
) S ( H `
 x ) ) )
189, 17bibi12d 224 . . . . . . 7  |-  ( ( ( H  Fn  A  /\  x  e.  A
)  /\  y  e.  A )  ->  (
( x `' R
y  <->  ( H `  x ) `' S
( H `  y
) )  <->  ( y R x  <->  ( H `  y ) S ( H `  x ) ) ) )
1918ralbidva 2322 . . . . . 6  |-  ( ( H  Fn  A  /\  x  e.  A )  ->  ( A. y  e.  A  ( x `' R y  <->  ( H `  x ) `' S
( H `  y
) )  <->  A. y  e.  A  ( y R x  <->  ( H `  y ) S ( H `  x ) ) ) )
2019ralbidva 2322 . . . . 5  |-  ( H  Fn  A  ->  ( A. x  e.  A  A. y  e.  A  ( x `' R
y  <->  ( H `  x ) `' S
( H `  y
) )  <->  A. x  e.  A  A. y  e.  A  ( y R x  <->  ( H `  y ) S ( H `  x ) ) ) )
21 ralcom 2473 . . . . 5  |-  ( A. y  e.  A  A. x  e.  A  (
y R x  <->  ( H `  y ) S ( H `  x ) )  <->  A. x  e.  A  A. y  e.  A  ( y R x  <-> 
( H `  y
) S ( H `
 x ) ) )
2220, 21syl6rbbr 188 . . . 4  |-  ( H  Fn  A  ->  ( A. y  e.  A  A. x  e.  A  ( y R x  <-> 
( H `  y
) S ( H `
 x ) )  <->  A. x  e.  A  A. y  e.  A  ( x `' R
y  <->  ( H `  x ) `' S
( H `  y
) ) ) )
2322anbi2d 437 . . 3  |-  ( H  Fn  A  ->  (
( H : A -1-1-onto-> B  /\  A. y  e.  A  A. x  e.  A  ( y R x  <-> 
( H `  y
) S ( H `
 x ) ) )  <->  ( H : A
-1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x `' R y  <->  ( H `  x ) `' S
( H `  y
) ) ) ) )
24 df-isom 4911 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. y  e.  A  A. x  e.  A  ( y R x  <-> 
( H `  y
) S ( H `
 x ) ) ) )
25 df-isom 4911 . . 3  |-  ( H 
Isom  `' R ,  `' S
( A ,  B
)  <->  ( H : A
-1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x `' R y  <->  ( H `  x ) `' S
( H `  y
) ) ) )
2623, 24, 253bitr4g 212 . 2  |-  ( H  Fn  A  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  `' R ,  `' S ( A ,  B ) ) )
273, 5, 26pm5.21nii 620 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  `' R ,  `' S ( A ,  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    e. wcel 1393   A.wral 2306   _Vcvv 2557   class class class wbr 3764   `'ccnv 4344    Fn wfn 4897   -1-1-onto->wf1o 4901   ` cfv 4902    Isom wiso 4903
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-f1o 4909  df-fv 4910  df-isom 4911
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator