ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp6 Unicode version

Theorem elxp6 5796
Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 4808. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
elxp6  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )

Proof of Theorem elxp6
StepHypRef Expression
1 elex 2566 . 2  |-  ( A  e.  ( B  X.  C )  ->  A  e.  _V )
2 opexg 3964 . . . 4  |-  ( ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C )  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  _V )
32adantl 262 . . 3  |-  ( ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) )  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  _V )
4 eleq1 2100 . . . 4  |-  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  ->  ( A  e.  _V  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  _V ) )
54adantr 261 . . 3  |-  ( ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) )  ->  ( A  e.  _V  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  _V ) )
63, 5mpbird 156 . 2  |-  ( ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) )  ->  A  e.  _V )
7 1stvalg 5769 . . . . . 6  |-  ( A  e.  _V  ->  ( 1st `  A )  = 
U. dom  { A } )
8 2ndvalg 5770 . . . . . 6  |-  ( A  e.  _V  ->  ( 2nd `  A )  = 
U. ran  { A } )
97, 8opeq12d 3557 . . . . 5  |-  ( A  e.  _V  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  =  <. U. dom  { A } ,  U. ran  { A } >. )
109eqeq2d 2051 . . . 4  |-  ( A  e.  _V  ->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. 
<->  A  =  <. U. dom  { A } ,  U. ran  { A } >. ) )
117eleq1d 2106 . . . . 5  |-  ( A  e.  _V  ->  (
( 1st `  A
)  e.  B  <->  U. dom  { A }  e.  B
) )
128eleq1d 2106 . . . . 5  |-  ( A  e.  _V  ->  (
( 2nd `  A
)  e.  C  <->  U. ran  { A }  e.  C
) )
1311, 12anbi12d 442 . . . 4  |-  ( A  e.  _V  ->  (
( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C )  <->  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) ) )
1410, 13anbi12d 442 . . 3  |-  ( A  e.  _V  ->  (
( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) )  <->  ( A  =  <. U. dom  { A } ,  U. ran  { A } >.  /\  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) ) ) )
15 elxp4 4808 . . 3  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. U. dom  { A } ,  U. ran  { A } >.  /\  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) ) )
1614, 15syl6rbbr 188 . 2  |-  ( A  e.  _V  ->  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) ) )
171, 6, 16pm5.21nii 620 1  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   _Vcvv 2557   {csn 3375   <.cop 3378   U.cuni 3580    X. cxp 4343   dom cdm 4345   ran crn 4346   ` cfv 4902   1stc1st 5765   2ndc2nd 5766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-iota 4867  df-fun 4904  df-fv 4910  df-1st 5767  df-2nd 5768
This theorem is referenced by:  elxp7  5797  eqopi  5798  1st2nd2  5801
  Copyright terms: Public domain W3C validator