ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeliunxp2 Unicode version

Theorem opeliunxp2 4476
Description: Membership in a union of cross products. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
opeliunxp2.1  |-  ( x  =  C  ->  B  =  E )
Assertion
Ref Expression
opeliunxp2  |-  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
Distinct variable groups:    x, C    x, D    x, E    x, A
Allowed substitution hint:    B( x)

Proof of Theorem opeliunxp2
StepHypRef Expression
1 df-br 3765 . . 3  |-  ( C
U_ x  e.  A  ( { x }  X.  B ) D  <->  <. C ,  D >.  e.  U_ x  e.  A  ( {
x }  X.  B
) )
2 relxp 4447 . . . . . 6  |-  Rel  ( { x }  X.  B )
32rgenw 2376 . . . . 5  |-  A. x  e.  A  Rel  ( { x }  X.  B
)
4 reliun 4458 . . . . 5  |-  ( Rel  U_ x  e.  A  ( { x }  X.  B )  <->  A. x  e.  A  Rel  ( { x }  X.  B
) )
53, 4mpbir 134 . . . 4  |-  Rel  U_ x  e.  A  ( {
x }  X.  B
)
65brrelexi 4384 . . 3  |-  ( C
U_ x  e.  A  ( { x }  X.  B ) D  ->  C  e.  _V )
71, 6sylbir 125 . 2  |-  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  ->  C  e.  _V )
8 elex 2566 . . 3  |-  ( C  e.  A  ->  C  e.  _V )
98adantr 261 . 2  |-  ( ( C  e.  A  /\  D  e.  E )  ->  C  e.  _V )
10 nfcv 2178 . . 3  |-  F/_ x C
11 nfiu1 3687 . . . . 5  |-  F/_ x U_ x  e.  A  ( { x }  X.  B )
1211nfel2 2190 . . . 4  |-  F/ x <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )
13 nfv 1421 . . . 4  |-  F/ x
( C  e.  A  /\  D  e.  E
)
1412, 13nfbi 1481 . . 3  |-  F/ x
( <. C ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
15 opeq1 3549 . . . . 5  |-  ( x  =  C  ->  <. x ,  D >.  =  <. C ,  D >. )
1615eleq1d 2106 . . . 4  |-  ( x  =  C  ->  ( <. x ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  <. C ,  D >.  e.  U_ x  e.  A  ( {
x }  X.  B
) ) )
17 eleq1 2100 . . . . 5  |-  ( x  =  C  ->  (
x  e.  A  <->  C  e.  A ) )
18 opeliunxp2.1 . . . . . 6  |-  ( x  =  C  ->  B  =  E )
1918eleq2d 2107 . . . . 5  |-  ( x  =  C  ->  ( D  e.  B  <->  D  e.  E ) )
2017, 19anbi12d 442 . . . 4  |-  ( x  =  C  ->  (
( x  e.  A  /\  D  e.  B
)  <->  ( C  e.  A  /\  D  e.  E ) ) )
2116, 20bibi12d 224 . . 3  |-  ( x  =  C  ->  (
( <. x ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  D  e.  B ) )  <->  ( <. C ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) ) ) )
22 opeliunxp 4395 . . 3  |-  ( <.
x ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  D  e.  B ) )
2310, 14, 21, 22vtoclgf 2612 . 2  |-  ( C  e.  _V  ->  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) ) )
247, 9, 23pm5.21nii 620 1  |-  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   A.wral 2306   _Vcvv 2557   {csn 3375   <.cop 3378   U_ciun 3657   class class class wbr 3764    X. cxp 4343   Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-iun 3659  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352
This theorem is referenced by:  mpt2xopn0yelv  5854
  Copyright terms: Public domain W3C validator