![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ibi | Unicode version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
ibi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ibi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpd 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | pm2.43i 43 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: ibir 166 pm5.21nii 620 elab3gf 2692 elpwi 3368 elsni 3393 elpr2 3397 elpri 3398 eltpi 3417 snssi 3508 prssi 3522 eloni 4112 limuni2 4134 elxpi 4361 releldmb 4571 relelrnb 4572 funeu 4926 fneu 5003 fvelima 5225 eloprabi 5822 fo2ndf 5848 tfrlem9 5935 ecexr 6111 elqsi 6158 qsel 6183 ecopovsym 6202 ecopovsymg 6205 brdomi 6230 en1uniel 6284 dif1en 6337 ltrnqi 6519 peano2nnnn 6929 peano2nn 7926 eliooord 8797 fzrev3i 8950 elfzole1 9011 elfzolt2 9012 rere 9465 climcl 9803 climcau 9866 |
Copyright terms: Public domain | W3C validator |