Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpri Unicode version

Theorem elpri 3398
 Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.)
Assertion
Ref Expression
elpri

Proof of Theorem elpri
StepHypRef Expression
1 elprg 3395 . 2
21ibi 165 1
 Colors of variables: wff set class Syntax hints:   wi 4   wo 629   wceq 1243   wcel 1393  cpr 3376 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382 This theorem is referenced by:  nelpri  3399  opth1  3973  0nelop  3985  ontr2exmid  4250  onintexmid  4297  reg3exmidlemwe  4303  funtpg  4950  ftpg  5347  acexmidlemcase  5507  2oconcl  6022  m1expcl2  9277
 Copyright terms: Public domain W3C validator