Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eloprabi | Unicode version |
Description: A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
eloprabi.1 | |
eloprabi.2 | |
eloprabi.3 |
Ref | Expression |
---|---|
eloprabi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2046 | . . . . . 6 | |
2 | 1 | anbi1d 438 | . . . . 5 |
3 | 2 | 3exbidv 1749 | . . . 4 |
4 | df-oprab 5516 | . . . 4 | |
5 | 3, 4 | elab2g 2689 | . . 3 |
6 | 5 | ibi 165 | . 2 |
7 | vex 2560 | . . . . . . . . . . . 12 | |
8 | vex 2560 | . . . . . . . . . . . 12 | |
9 | 7, 8 | opex 3966 | . . . . . . . . . . 11 |
10 | vex 2560 | . . . . . . . . . . 11 | |
11 | 9, 10 | op1std 5775 | . . . . . . . . . 10 |
12 | 11 | fveq2d 5182 | . . . . . . . . 9 |
13 | 7, 8 | op1st 5773 | . . . . . . . . 9 |
14 | 12, 13 | syl6req 2089 | . . . . . . . 8 |
15 | eloprabi.1 | . . . . . . . 8 | |
16 | 14, 15 | syl 14 | . . . . . . 7 |
17 | 11 | fveq2d 5182 | . . . . . . . . 9 |
18 | 7, 8 | op2nd 5774 | . . . . . . . . 9 |
19 | 17, 18 | syl6req 2089 | . . . . . . . 8 |
20 | eloprabi.2 | . . . . . . . 8 | |
21 | 19, 20 | syl 14 | . . . . . . 7 |
22 | 9, 10 | op2ndd 5776 | . . . . . . . . 9 |
23 | 22 | eqcomd 2045 | . . . . . . . 8 |
24 | eloprabi.3 | . . . . . . . 8 | |
25 | 23, 24 | syl 14 | . . . . . . 7 |
26 | 16, 21, 25 | 3bitrd 203 | . . . . . 6 |
27 | 26 | biimpa 280 | . . . . 5 |
28 | 27 | exlimiv 1489 | . . . 4 |
29 | 28 | exlimiv 1489 | . . 3 |
30 | 29 | exlimiv 1489 | . 2 |
31 | 6, 30 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wceq 1243 wex 1381 wcel 1393 cop 3378 cfv 4902 coprab 5513 c1st 5765 c2nd 5766 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-sbc 2765 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-iota 4867 df-fun 4904 df-fv 4910 df-oprab 5516 df-1st 5767 df-2nd 5768 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |