ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpr2 Unicode version

Theorem elpr2 3397
Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
elpr2.1  |-  B  e. 
_V
elpr2.2  |-  C  e. 
_V
Assertion
Ref Expression
elpr2  |-  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) )

Proof of Theorem elpr2
StepHypRef Expression
1 elprg 3395 . . 3  |-  ( A  e.  { B ,  C }  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) ) )
21ibi 165 . 2  |-  ( A  e.  { B ,  C }  ->  ( A  =  B  \/  A  =  C ) )
3 elpr2.1 . . . . . 6  |-  B  e. 
_V
4 eleq1 2100 . . . . . 6  |-  ( A  =  B  ->  ( A  e.  _V  <->  B  e.  _V ) )
53, 4mpbiri 157 . . . . 5  |-  ( A  =  B  ->  A  e.  _V )
6 elpr2.2 . . . . . 6  |-  C  e. 
_V
7 eleq1 2100 . . . . . 6  |-  ( A  =  C  ->  ( A  e.  _V  <->  C  e.  _V ) )
86, 7mpbiri 157 . . . . 5  |-  ( A  =  C  ->  A  e.  _V )
95, 8jaoi 636 . . . 4  |-  ( ( A  =  B  \/  A  =  C )  ->  A  e.  _V )
10 elprg 3395 . . . 4  |-  ( A  e.  _V  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) ) )
119, 10syl 14 . . 3  |-  ( ( A  =  B  \/  A  =  C )  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C )
) )
1211ibir 166 . 2  |-  ( ( A  =  B  \/  A  =  C )  ->  A  e.  { B ,  C } )
132, 12impbii 117 1  |-  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 98    \/ wo 629    = wceq 1243    e. wcel 1393   _Vcvv 2557   {cpr 3376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382
This theorem is referenced by:  elxr  8696
  Copyright terms: Public domain W3C validator