Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elsni | Unicode version |
Description: There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
elsni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsng 3390 | . 2 | |
2 | 1 | ibi 165 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1243 wcel 1393 csn 3375 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-sn 3381 |
This theorem is referenced by: elsn2g 3404 disjsn2 3433 sssnm 3525 disjxsn 3762 opth1 3973 elsuci 4140 ordtri2orexmid 4248 onsucsssucexmid 4252 sosng 4413 ressn 4858 funcnvsn 4945 fvconst 5351 fmptap 5353 fmptapd 5354 fvunsng 5357 1stconst 5842 2ndconst 5843 reldmtpos 5868 tpostpos 5879 ac6sfi 6352 onunsnss 6355 snon0 6356 elreal2 6907 ax1rid 6951 ltxrlt 7085 un0addcl 8215 un0mulcl 8216 elfzonlteqm1 9066 iseqid3 9245 1exp 9284 bj-nntrans 10076 bj-nnelirr 10078 |
Copyright terms: Public domain | W3C validator |