ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecdmn0m Unicode version

Theorem ecdmn0m 6148
Description: A representative of an inhabited equivalence class belongs to the domain of the equivalence relation. (Contributed by Jim Kingdon, 21-Aug-2019.)
Assertion
Ref Expression
ecdmn0m  |-  ( A  e.  dom  R  <->  E. x  x  e.  [ A ] R )
Distinct variable groups:    x, R    x, A

Proof of Theorem ecdmn0m
StepHypRef Expression
1 elex 2566 . 2  |-  ( A  e.  dom  R  ->  A  e.  _V )
2 ecexr 6111 . . 3  |-  ( x  e.  [ A ] R  ->  A  e.  _V )
32exlimiv 1489 . 2  |-  ( E. x  x  e.  [ A ] R  ->  A  e.  _V )
4 eldmg 4530 . . 3  |-  ( A  e.  _V  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
5 vex 2560 . . . . 5  |-  x  e. 
_V
6 elecg 6144 . . . . 5  |-  ( ( x  e.  _V  /\  A  e.  _V )  ->  ( x  e.  [ A ] R  <->  A R x ) )
75, 6mpan 400 . . . 4  |-  ( A  e.  _V  ->  (
x  e.  [ A ] R  <->  A R x ) )
87exbidv 1706 . . 3  |-  ( A  e.  _V  ->  ( E. x  x  e.  [ A ] R  <->  E. x  A R x ) )
94, 8bitr4d 180 . 2  |-  ( A  e.  _V  ->  ( A  e.  dom  R  <->  E. x  x  e.  [ A ] R ) )
101, 3, 9pm5.21nii 620 1  |-  ( A  e.  dom  R  <->  E. x  x  e.  [ A ] R )
Colors of variables: wff set class
Syntax hints:    <-> wb 98   E.wex 1381    e. wcel 1393   _Vcvv 2557   class class class wbr 3764   dom cdm 4345   [cec 6104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-ec 6108
This theorem is referenced by:  ereldm  6149  elqsn0m  6174  ecelqsdm  6176
  Copyright terms: Public domain W3C validator