ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcex2 Structured version   Unicode version

Theorem sbcex2 2806
Description: Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.)
Assertion
Ref Expression
sbcex2  [.  ].  [.  ].
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   ()

Proof of Theorem sbcex2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sbcex 2766 . 2  [.  ].  _V
2 sbcex 2766 . . 3  [.  ].  _V
32exlimiv 1486 . 2  [.  ].  _V
4 dfsbcq2 2761 . . 3  [.  ].
5 dfsbcq2 2761 . . . 4  [.  ].
65exbidv 1703 . . 3  [.  ].
7 sbex 1877 . . 3
84, 6, 7vtoclbg 2608 . 2  _V  [.  ].  [.  ].
91, 3, 8pm5.21nii 619 1  [.  ].  [.  ].
Colors of variables: wff set class
Syntax hints:   wb 98   wceq 1242  wex 1378   wcel 1390  wsb 1642   _Vcvv 2551   [.wsbc 2758
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-sbc 2759
This theorem is referenced by:  csbdmg  4472
  Copyright terms: Public domain W3C validator