Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcan | Unicode version |
Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) |
Ref | Expression |
---|---|
dcan | DECID DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 102 | . . . . . 6 | |
2 | 1 | intnanrd 841 | . . . . 5 |
3 | 2 | orim2i 678 | . . . 4 |
4 | simpr 103 | . . . . . 6 | |
5 | 4 | intnand 840 | . . . . 5 |
6 | 5 | olcd 653 | . . . 4 |
7 | 3, 6 | jaoi 636 | . . 3 |
8 | df-dc 743 | . . . . 5 DECID | |
9 | df-dc 743 | . . . . 5 DECID | |
10 | 8, 9 | anbi12i 433 | . . . 4 DECID DECID |
11 | andi 731 | . . . 4 | |
12 | andir 732 | . . . . 5 | |
13 | 12 | orbi1i 680 | . . . 4 |
14 | 10, 11, 13 | 3bitri 195 | . . 3 DECID DECID |
15 | df-dc 743 | . . 3 DECID | |
16 | 7, 14, 15 | 3imtr4i 190 | . 2 DECID DECID DECID |
17 | 16 | ex 108 | 1 DECID DECID DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 97 wo 629 DECID wdc 742 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 |
This theorem depends on definitions: df-bi 110 df-dc 743 |
This theorem is referenced by: dcbi 844 annimdc 845 pm4.55dc 846 anordc 863 xordidc 1290 nn0n0n1ge2b 8320 |
Copyright terms: Public domain | W3C validator |