ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcan Unicode version

Theorem dcan 842
Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
Assertion
Ref Expression
dcan  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  /\  ps )
) )

Proof of Theorem dcan
StepHypRef Expression
1 simpl 102 . . . . . 6  |-  ( ( -.  ph  /\  ps )  ->  -.  ph )
21intnanrd 841 . . . . 5  |-  ( ( -.  ph  /\  ps )  ->  -.  ( ph  /\  ps ) )
32orim2i 678 . . . 4  |-  ( ( ( ph  /\  ps )  \/  ( -.  ph 
/\  ps ) )  -> 
( ( ph  /\  ps )  \/  -.  ( ph  /\  ps )
) )
4 simpr 103 . . . . . 6  |-  ( ( ( ph  \/  -.  ph )  /\  -.  ps )  ->  -.  ps )
54intnand 840 . . . . 5  |-  ( ( ( ph  \/  -.  ph )  /\  -.  ps )  ->  -.  ( ph  /\ 
ps ) )
65olcd 653 . . . 4  |-  ( ( ( ph  \/  -.  ph )  /\  -.  ps )  ->  ( ( ph  /\ 
ps )  \/  -.  ( ph  /\  ps )
) )
73, 6jaoi 636 . . 3  |-  ( ( ( ( ph  /\  ps )  \/  ( -.  ph  /\  ps )
)  \/  ( (
ph  \/  -.  ph )  /\  -.  ps ) )  ->  ( ( ph  /\ 
ps )  \/  -.  ( ph  /\  ps )
) )
8 df-dc 743 . . . . 5  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
9 df-dc 743 . . . . 5  |-  (DECID  ps  <->  ( ps  \/  -.  ps ) )
108, 9anbi12i 433 . . . 4  |-  ( (DECID  ph  /\ DECID  ps ) 
<->  ( ( ph  \/  -.  ph )  /\  ( ps  \/  -.  ps )
) )
11 andi 731 . . . 4  |-  ( ( ( ph  \/  -.  ph )  /\  ( ps  \/  -.  ps )
)  <->  ( ( (
ph  \/  -.  ph )  /\  ps )  \/  (
( ph  \/  -.  ph )  /\  -.  ps ) ) )
12 andir 732 . . . . 5  |-  ( ( ( ph  \/  -.  ph )  /\  ps )  <->  ( ( ph  /\  ps )  \/  ( -.  ph 
/\  ps ) ) )
1312orbi1i 680 . . . 4  |-  ( ( ( ( ph  \/  -.  ph )  /\  ps )  \/  ( ( ph  \/  -.  ph )  /\  -.  ps ) )  <-> 
( ( ( ph  /\ 
ps )  \/  ( -.  ph  /\  ps )
)  \/  ( (
ph  \/  -.  ph )  /\  -.  ps ) ) )
1410, 11, 133bitri 195 . . 3  |-  ( (DECID  ph  /\ DECID  ps ) 
<->  ( ( ( ph  /\ 
ps )  \/  ( -.  ph  /\  ps )
)  \/  ( (
ph  \/  -.  ph )  /\  -.  ps ) ) )
15 df-dc 743 . . 3  |-  (DECID  ( ph  /\ 
ps )  <->  ( ( ph  /\  ps )  \/ 
-.  ( ph  /\  ps ) ) )
167, 14, 153imtr4i 190 . 2  |-  ( (DECID  ph  /\ DECID  ps )  -> DECID 
( ph  /\  ps )
)
1716ex 108 1  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  /\  ps )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    \/ wo 629  DECID wdc 742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630
This theorem depends on definitions:  df-bi 110  df-dc 743
This theorem is referenced by:  dcbi  844  annimdc  845  pm4.55dc  846  anordc  863  xordidc  1290  nn0n0n1ge2b  8320
  Copyright terms: Public domain W3C validator