ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.55dc Unicode version

Theorem pm4.55dc 845
Description: Theorem *4.55 of [WhiteheadRussell] p. 120, for decidable propositions. (Contributed by Jim Kingdon, 2-May-2018.)
Assertion
Ref Expression
pm4.55dc DECID DECID

Proof of Theorem pm4.55dc
StepHypRef Expression
1 pm4.54dc 804 . . . . 5 DECID DECID
21imp 115 . . . 4 DECID DECID
3 dcn 745 . . . . . . . . 9 DECID DECID
43anim2i 324 . . . . . . . 8 DECID DECID DECID DECID
5 dcor 842 . . . . . . . . 9 DECID DECID DECID
65imp 115 . . . . . . . 8 DECID DECID DECID
74, 6syl 14 . . . . . . 7 DECID DECID DECID
8 dcn 745 . . . . . . . . 9 DECID DECID
9 dcan 841 . . . . . . . . 9 DECID DECID DECID
108, 9syl 14 . . . . . . . 8 DECID DECID DECID
1110imp 115 . . . . . . 7 DECID DECID DECID
127, 11jca 290 . . . . . 6 DECID DECID DECID DECID
13 con2bidc 768 . . . . . . 7 DECID DECID
1413imp 115 . . . . . 6 DECID DECID
1512, 14syl 14 . . . . 5 DECID DECID
1615biimprd 147 . . . 4 DECID DECID
172, 16mpd 13 . . 3 DECID DECID
1817bicomd 129 . 2 DECID DECID
1918ex 108 1 DECID DECID
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wa 97   wb 98   wo 628  DECID wdc 741
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629
This theorem depends on definitions:  df-bi 110  df-dc 742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator