ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcbi Structured version   Unicode version

Theorem dcbi 843
Description: An equivalence of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
Assertion
Ref Expression
dcbi DECID DECID DECID

Proof of Theorem dcbi
StepHypRef Expression
1 dcim 783 . . 3 DECID DECID DECID
2 dcim 783 . . . 4 DECID DECID DECID
32com12 27 . . 3 DECID DECID DECID
4 dcan 841 . . 3 DECID DECID DECID
51, 3, 4syl6c 60 . 2 DECID DECID DECID
6 dfbi2 368 . . 3
76dcbii 746 . 2 DECID DECID
85, 7syl6ibr 151 1 DECID DECID DECID
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wb 98  DECID wdc 741
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629
This theorem depends on definitions:  df-bi 110  df-dc 742
This theorem is referenced by:  xor3dc  1275  pm5.15dc  1277  bilukdc  1284  xordidc  1287
  Copyright terms: Public domain W3C validator