Proof of Theorem xordidc
Step | Hyp | Ref
| Expression |
1 | | dcbi 843 |
. . . . 5
DECID DECID DECID      |
2 | 1 | imp 115 |
. . . 4
 DECID DECID 
DECID     |
3 | | annimdc 844 |
. . . . . 6
DECID DECID                |
4 | 3 | imp 115 |
. . . . 5
 DECID DECID                |
5 | | pm5.32 426 |
. . . . . 6
       
     |
6 | 5 | notbii 593 |
. . . . 5
             |
7 | 4, 6 | syl6bb 185 |
. . . 4
 DECID DECID           
      |
8 | 2, 7 | sylan2 270 |
. . 3
 DECID DECID DECID                 |
9 | | xornbidc 1279 |
. . . . . 6
DECID DECID          |
10 | 9 | imp 115 |
. . . . 5
 DECID DECID          |
11 | 10 | adantl 262 |
. . . 4
 DECID DECID DECID           |
12 | 11 | anbi2d 437 |
. . 3
 DECID DECID DECID               |
13 | | dcan 841 |
. . . . . 6
DECID DECID DECID      |
14 | 13 | imp 115 |
. . . . 5
 DECID DECID  DECID     |
15 | 14 | adantrr 448 |
. . . 4
 DECID DECID DECID   DECID
    |
16 | | dcan 841 |
. . . . . 6
DECID DECID DECID      |
17 | 16 | imp 115 |
. . . . 5
 DECID DECID  DECID     |
18 | 17 | adantrl 447 |
. . . 4
 DECID DECID DECID   DECID
    |
19 | | xornbidc 1279 |
. . . 4
DECID  
DECID      
             |
20 | 15, 18, 19 | sylc 56 |
. . 3
 DECID DECID DECID                   |
21 | 8, 12, 20 | 3bitr4d 209 |
. 2
 DECID DECID DECID                 |
22 | 21 | exp32 347 |
1
DECID DECID DECID     
           |