ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xornbidc Structured version   Unicode version

Theorem xornbidc 1279
Description: Exclusive or is equivalent to negated biconditional for decidable propositions. (Contributed by Jim Kingdon, 27-Apr-2018.)
Assertion
Ref Expression
xornbidc DECID DECID  \/_

Proof of Theorem xornbidc
StepHypRef Expression
1 xor2dc 1278 . . . 4 DECID DECID
21imp 115 . . 3 DECID DECID
3 df-xor 1266 . . 3  \/_
42, 3syl6rbbr 188 . 2 DECID DECID  \/_
54ex 108 1 DECID DECID  \/_
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wa 97   wb 98   wo 628  DECID wdc 741    \/_ wxo 1265
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629
This theorem depends on definitions:  df-bi 110  df-dc 742  df-xor 1266
This theorem is referenced by:  xordc  1280  xordidc  1287
  Copyright terms: Public domain W3C validator