Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xornbidc | GIF version |
Description: Exclusive or is equivalent to negated biconditional for decidable propositions. (Contributed by Jim Kingdon, 27-Apr-2018.) |
Ref | Expression |
---|---|
xornbidc | ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xor2dc 1281 | . . . 4 ⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))))) | |
2 | 1 | imp 115 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)))) |
3 | df-xor 1267 | . . 3 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) | |
4 | 2, 3 | syl6rbbr 188 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓))) |
5 | 4 | ex 108 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ↔ wb 98 ∨ wo 629 DECID wdc 742 ⊻ wxo 1266 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 |
This theorem depends on definitions: df-bi 110 df-dc 743 df-xor 1267 |
This theorem is referenced by: xordc 1283 xordidc 1290 |
Copyright terms: Public domain | W3C validator |