ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xordc Unicode version

Theorem xordc 1283
Description: Two ways to express "exclusive or" between decidable propositions. Theorem *5.22 of [WhiteheadRussell] p. 124, but for decidable propositions. (Contributed by Jim Kingdon, 5-May-2018.)
Assertion
Ref Expression
xordc  |-  (DECID  ph  ->  (DECID  ps 
->  ( -.  ( ph  <->  ps )  <->  ( ( ph  /\ 
-.  ps )  \/  ( ps  /\  -.  ph )
) ) ) )

Proof of Theorem xordc
StepHypRef Expression
1 excxor 1269 . . . 4  |-  ( (
ph  \/_  ps )  <->  ( ( ph  /\  -.  ps )  \/  ( -.  ph  /\  ps )
) )
2 ancom 253 . . . . 5  |-  ( ( -.  ph  /\  ps )  <->  ( ps  /\  -.  ph ) )
32orbi2i 679 . . . 4  |-  ( ( ( ph  /\  -.  ps )  \/  ( -.  ph  /\  ps )
)  <->  ( ( ph  /\ 
-.  ps )  \/  ( ps  /\  -.  ph )
) )
41, 3bitri 173 . . 3  |-  ( (
ph  \/_  ps )  <->  ( ( ph  /\  -.  ps )  \/  ( ps  /\  -.  ph )
) )
5 xornbidc 1282 . . . 4  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( ph  \/_  ps ) 
<->  -.  ( ph  <->  ps )
) ) )
65imp 115 . . 3  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( ph  \/_ 
ps )  <->  -.  ( ph 
<->  ps ) ) )
74, 6syl5rbbr 184 . 2  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( -.  ( ph 
<->  ps )  <->  ( ( ph  /\  -.  ps )  \/  ( ps  /\  -.  ph ) ) ) )
87ex 108 1  |-  (DECID  ph  ->  (DECID  ps 
->  ( -.  ( ph  <->  ps )  <->  ( ( ph  /\ 
-.  ps )  \/  ( ps  /\  -.  ph )
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98    \/ wo 629  DECID wdc 742    \/_ wxo 1266
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630
This theorem depends on definitions:  df-bi 110  df-dc 743  df-xor 1267
This theorem is referenced by:  dfbi3dc  1288  pm5.24dc  1289
  Copyright terms: Public domain W3C validator